
Printed September 5, 2023

APREPRO: An Algebraic Preprocessor
for Parameterizing Finite Element

Analyses

Gregory D. Sjaardema
Sandia National Laboratories
Albuquerque, NM 87185-0380

Abstract
Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic,
string, or conditional expressions. It interprets the expressions and outputs them to the output file
along with the general text. The syntax used in Aprepro is such that all expressions between the
delimiters { and } are evaluated and all other text is simply echoed to the output file. Aprepro
contains several mathematical functions, string functions, and flow control constructs. In addition,
functions are included that implement a units conversion system. Aprepro was written primarily
to simplify the preparation of parameterized input files for finite element analyses at Sandia National
Laboratories; however, it can process any text file that does not use the characters { }.

1

4

Contents

1 Introduction 8

2 Execution 9

2.1 Aprepro Execution and Program Options . 9

2.2 Interactive Input . 10

3 Syntax 11

4 Operators 14

4.1 Arithmetic Operators . 14

4.2 Assignment Operators . 14

4.3 Relational Operators . 15

4.4 Boolean Operators . 15

4.5 String Operators . 15

5 Predefined Variables 17

6 Functions 18

6.1 Mathematical Functions . 18

6.2 Additional Functions . 23

6.2.1 [var] or [expression] . 23

6.2.2 File Inclusion . 23

6.2.3 Conditionals . 23

6.2.4 Switch Statements . 24

6.2.5 Loops . 25

6.2.6 ECHO . 26

6.2.7 Suppress individual expression output . 26

6.2.8 VERBATIM . 26

5

6.2.9 IMMUTABLE . 26

6.2.10 Output File Specification . 27

6.2.11 Exodus Metadata Extraction . 27

6.2.12 Exodus Info Records Extraction . 29

7 Units Conversion System 30

7.1 Introduction . 30

7.2 Defined Units Variables . 31

7.3 Physical Constants . 33

7.4 Usage . 35

7.5 Additional Comments . 36

8 Error, Warning, and Informational Messages 37

8.1 Error Messages . 37

8.2 Warning Messages . 38

8.3 Informational Messages . 38

9 Examples 39

9.1 Mesh Generation Input File . 39

9.2 Macro Examples . 40

9.3 Command Line Variable Assignment . 40

9.4 Loop Example . 41

9.5 If Example . 41

9.6 Aprepro Exodus Example . 42

9.7 Aprepro Test File Example . 45

10 Aprepro Library Interface 51

10.1 Adding basic Aprepro parsing to your application 51

10.2 Additional Aprepro parsing capabilities . 51

10.2.1 Adding new variables . 52

10.2.2 Adding new functions . 52

10.2.3 Modifying Aprepro Execution Settings . 52

10.3 Aprepro Library Test/Example Program . 53

Bibliography 57

6

List of Tables

2.2 Key Bindings used in the interactive input to Aprepro 10

4.1 Arithmetic Operators . 14

4.2 Assignment Operators . 15

4.3 Relational Operators . 15

4.4 Boolean Operators . 15

5.1 Predefined Variables . 17

5.2 Effect of various output format specifications . 17

6.1 Mathematical Functions . 18

6.1 Mathematical Functions . 19

6.2 String Functions . 19

6.2 String Functions . 20

6.2 String Functions . 21

6.3 Array Functions . 21

6.4 Functions with Array variables as parameters . 22

6.5 Exodus Scalar Variables . 27

6.6 Exodus String Variables . 27

6.6 Exodus String Variables . 28

6.7 Exodus Array Variables . 28

7.1 Units Systems and Corresponding Output Format–Metric 30

7.2 Units Systems and Corresponding Output Format–English 30

7.3 Defined Units Variables . 31

7.4 Physical Constants . 33

7

1 Introduction

Aprepro is an algebraic preprocessor that reads a file containing both general text and algebraic
expressions. It echoes the general text to the output file, along with the results of the algebraic
expressions. The syntax used in Aprepro is such that all expressions between the delimiters { and
} are evaluated and all other text is simply echoed to the output file. For example, if the following
lines are input to Aprepro:

$ Rad = {Rad = 12.0}
Point 1 {x1 = Rad * sind(30.)} {y1 = Rad * cosd(30.)}
Point 2 {x1 + 10.0} {y1}

The output would look like:

$ Rad = 12

Point 1 6 10.39230485

Point 2 16 10.39230485

In this example, the algebraic expressions are specified by surrounding them with { and }, and the
functions sind() and cosd() calculate the sine and cosine of an angle given in degrees.

Aprepro has been used extensively for several years to prepare parameterized files for finite element
analyses using the Sandia National Laboratories SEACAS system [1]. The units conversion capability
has greatly increased the usability of Aprepro. Aprepro can also be used for non-finite element
applications such as a powerful calculator and a general text processor for any file that does not use
the delimiters { and }.

The remainder of this document is organized as follows:

• Chapter 2 documents the command line options for Aprepro and the text input, editing, and
recall capabilities.

• Chapter 3 documents the syntax recognized by Aprepro,

• Chapters 4, 5, and 6 describe the operators, predefined variables, and functions,

• Chapter 7 describes the units conversion system,

• Chapter 8 describes the error messages output from Aprepro, and

• Chapter 9 presents some examples of Aprepro usage.

8

2 Execution

2.1 Aprepro Execution and Program Options

Aprepro is executed with the command:

aprepro [--parameters] [-dsviehMWCq] [-I path] [-c char] [var=val] filein fileout

The effects of the parameters are:

–debug (-d) Dump all variables, debug loops/if/endif
–dumpvars (-D) Dump all variables at end of run
–dumpvars json (-J) Dump all variables at end of run in json format
–version (-v) Print version number to stderr
–comment char (-c char) Change comment character to ’char’
–immutable (-X) All variables are immutable–cannot be modified
–errors fatal (-f) Exit program with nonzero status if errors are encountered
–errors and warnings fatal (-F) Exit program with nonzero status if warnings are encountered
–require defined (-R) Treat undefined variable warnings as fatal
–interactive (-i) Interactive use, no buffering of output.
–include path (-I path) Include file or include path. Any variables defined in the include file will be im-

mutable.
–one based index (-1) Array indexing is one-based (default = zero-based)
–exit on (-e) If this is enabled, Aprepro will exit when any of the strings EXIT, Exit, exit,

QUIT, Quit, or quit are entered. Otherwise, Aprepro will exit at end of file.
–message (-M) Print INFO messages. (See Chapter 8 for a list of INFO messages.)
–info=file Output INFO messages (e.g. DUMP() output) to file.
–nowarning (-W) Do not print warning messages. (See Chapter 8 for a list of warning messages.)
–copyright (-c) Print copyright message
–quiet (-q) Do not anything extra to stdout
–help (-h) Print this list
var=val Assign value val to variable var. This lets you dynamically set the value of a variable

and change it between runs without editing the input file. Multiple var=val pairs
can be specified on the command line. A variable that is defined on the command
line will be an immutable variable whose value cannot be changed1. If var is a string
variable, then val needs to be surrounded by escaped double quotes. For example
name=\"My\Name\" will define the string variable name.2

input file specifies the file that contains the Aprepro input. If this parameter is omitted,
Aprepro will run interactively.

output file specifies the file Aprepro will write the processed data to. If this parameter is
omitted, Aprepro will write the data to the terminal. (stdout)

The - followed by a single letter shown in the parameter descriptions above are optional short-
options that can be specified instead of the long options. For example, the following two lines are
equivalent:

aprepro --debug --nowarning --statistics --comment #

aprepro -dWsc#

1Unless the variable name begins with an underscore.
2Note that any spaces in the string variables value must be escaped also.

9

Note that the short options can be concatenated.

2.2 Interactive Input

If no input file is specified when Aprepro is executed, then all input will be read from standard
input; or in other words, typed in by the user. In this mode, there are a few command-line editing
and recall capabilities provided.

The command-line editing provides Emacs style key bindings and history functionality. The key
bindings are shown in the following table. The syntax ^X indicates that the user should press and
hold the “control” key and then press the X key. The syntax M-X indicates pressing the “meta” key
followed by the X key. The meta key is sometimes escape, or sometimes “alt”, or some other key
depending on the users keymap.

Table 2.2: Key Bindings used in the interactive input to Aprepro

Key Function
ˆA/ˆE Move cursor to beginning/end of the line.
ˆF/ˆB Move cursor forward/backward one character.
ˆD Delete the character under the cursor.
ˆH Delete the character to the left of the cursor.
ˆK Kill from the cursor to the end of line.
ˆL Redraw current line.
ˆO Toggle overwrite/insert mode. Initially in insert mode. Text added

in overwrite mode (including yanks) overwrite existing text, while
insert mode does not overwrite.

ˆP/ˆN Move to previous/next item on history list.
ˆR/ˆS Perform incremental reverse/forward search for string on the his-

tory list. Typing normal characters adds to the current search
string and searches for a match. Typing ˆR/ˆS marks the start of
a new search, and moves on to the next match. Typing ˆH deletes
the last character from the search string, and searches from the
starting location of the last search. Therefore, repeated ˆH’s ap-
pear to unwind to the match nearest the point at which the last ˆR
or ˆS was typed. If ˆH is repeated until the search string is empty
the search location begins from the start of the history list. Typing
ESC or any other editing character accepts the current match and
loads it into the buffer, terminating the search.

ˆT Toggle the characters under and to the left of the cursor.
ˆU Kill from beginning to the end of the line.
ˆY Yank previously killed text back at current location. Note that this

will overwrite or insert, depending on the current mode.
M-F/M-B Move cursor forward/backward one word.
ˆSPC Set mark.
ˆW Kill from mark to point.
ˆX Exchange mark and point.
RETURN returns current buffer to the program.

10

3 Syntax

Aprepro is in one of two states while it is processing an input file, either echoing or parsing. In
the echoing state, Aprepro echoes every character that it reads to the output file. If it reads the
character {, it enters the parsing state. In the parsing state, Aprepro reads characters from the
input file and identifies the characters as tokens which can be function names, variables, numbers,
operators, or delimiters. When Aprepro encounters the character }, it tries to interpret the tokens
as an algebraic, string, or conditional expression; if it is successful, it prints the value to the output
file; if it cannot evaluate the expression, it prints the message:

Aprepro: ERROR: parse error {filename}, line {line#}

to the terminal1 prints the value 0 to the output file.

The rules that Aprepro uses when identifying functions, variables, numbers, operators, delimiters,
and expressions are described below:

Functions Function names are sequences of letters and digits and underscores () that begin with
a letter. The function’s arguments are enclosed in parentheses.

For example, in the line atan2(a,1.0), atan2 is the function name, and a and 1.0 are the
arguments. See Chapter 6 for a list of the available functions and their arguments.

Variables A variable is a name that references a numeric or string value. A variable is defined
by giving it a name and assigning it a value. For example, the expression a = 1.0 defines
the variable a with the numeric value 1.0; the expression b= "A string" defines the variable
b with the value A string. Variable names are sequences of letters, digits, colons (:), and
underscores () that begin with either a letter or an underscore. Variable names cannot match
any function name and they are case-sensitive, that is, abc de and AbC dE are two distinct
variable names. A few variables are predefined, these are listed in Chapter 5.

Any variable that is not defined is equal to 0. A warning message is output to the terminal if
an undefined variable is used, or if a previously defined variable is redefined. If the variable
name begins with an underscore, no warning is output when the variable is redefined.2.

Immutable Variables An immutable variable is a variable whose value cannot be changed. An
immutable variable name is follows the same rules as a regular variable except that the name
cannot begin with an underscore. Immutable variables are created inside an IMMUTABLE(ON)

block (See Section ??) or when Aprepro is executed with the --immutable or -X command
line options (See Chapter 2). A value defined on the command line is immutable ()(See
Chapter 2). If the value of an immutable variable is attempted to be modified, an error
message of the form: [Aprepro: (IMMUTABLE) Variable ’variable’ is immutable and cannot
be modified (file, line line#)] will be output to the standard error stream and the expression
containing the assignment to the immutable variable will return nothing.

Numbers Numbers can be integers like 1234, decimal numbers like 1.234, or in scientific notation
like 1.234E-26. All numbers are stored internally as floating point numbers.

Strings Strings are sequences of numbers, characters, and symbols that are delimited by either
single quotes (’this is a string’) or double quotes ("this is another string"). Strings
that are delimited by one type of quote can include the other type of quote. For example,

1Error messages are printed to standard error. On UNIX systems they can be redirected to a file using your shells
redirection syntax. See the man page for your shell for more information.

2Warnings can be turned off with the -W or --warning option.

11

’This is a valid "string"’. Strings delimited by single quotes can span multiple lines;
strings delimited by double quotes must terminate on a single line or a parsing error message
will be issued.

Operators Operators are any of the symbols defined in Chapter 4. Examples are + (addition), -
(subtraction), * (multiplication), / (division), = (assignment), and ˆ (exponentiation)

Delimiters The delimiters recognized by Aprepro are: the comma (,) which separates arguments
in function lists, the left curly brace ({) which begins an expression, the right curly brace (})
which ends an expression, the left parenthesis (which begins a function argument list, the
right parenthesis) which ends a function argument list, the single quote (’) which delimits a
multiline string, and the double quote (") which delimits a single-line string. If a left or right
curly brace is needed in the processes output without being interpreted by Aprepro, precede
the curly brace with a backslash. For example, \{ \}.

Expressions An expression consists of any combination of numeric and string constants, variables,
operators, and functions. Four types of expressions are recognized in Aprepro: algebraic,
string, relational, and conditional.

Algebraic Expressions Almost any valid FORTRAN or C algebraic expression can be recognized
and evaluated by Aprepro. An expression of the form a=b+10/37.5 will evaluate the expres-
sion on the right-hand-side of the equals sign, print the value to the output file, and assign the
value to the variable a. An expression of the form b+10/37.5 will evaluate the expression and
print the value to the output file. If you want to assign a value to a variable without printing
the result, the expression must be inside an ECHO(ON|OFF) block (see 26). Variables can also
be set on the command line prior to reading any input files using the var=val syntax. An
example of this usage is given in Section 9.3. Only a single expression is allowed within the
{ } delimiters. For example, {x=sqrt(y^2 + sin(z))}, {x=y=z}, and{x=y} {a=z} are valid
expressions, but {x=y a=z} is invalid because it contains two expressions within a single set
of delimiters.

String Expressions Aprepro has limited string support. The only supported operations are
(1) assigning a variable equal to a string (a = "This is a string"), (2) functions that return
a string (See Table 6.2), and (3) concatenating two strings into another string (a = "Hello" // " " // "World").

Relational Expressions: Relational expressions are expressions that return the result of compar-
ing two expressions. A relational expression is either true (returns 1) or false (returns 0). A
relational expression is simply two expressions of any kind separated by a relational operator
(See Section 4.3).

Conditional Expressions Aprepro recognizes a conditional expression of the form:

relational expression ? true exp : false exp

where relational expression can be any valid relational expression, and true exp and
false exp are two algebraic expressions or string expressions. If the relational expression
is true, then the result of true exp is returned, otherwise the result of false exp is returned.
For example, if the following command were entered:

a = (sind(20.0) > cosd(20.0) ? 1 : -1)

then, a would be assigned the value -1 since the relational expression to the left of the question
mark is false. Both true exp and false exp are always evaluated prior to evaluating the
relational expression. Therefore, you should not write an equation such as

sind(20.0*a) > cosd(20.0*a) ? a=sind(20.0) : a=cosd(20.0)

12

since the value of a can change during the evaluation of the expression. Instead, this equation
should be written as:

a = (sind(20.0*a) > cosd(20.0*a) ? sind(20.0) : cosd(20.0))

13

4 Operators

The operators recognized by Aprepro are listed below. The letters a and b can represent variables,
numbers, functions, or expressions unless otherwise noted. The tables below also list the precedence
and associativity of the operators. Precedence defines the order in which operations should be
performed. For example, in the expression:

{3 * 4 + 6 / 2}

the multiplications and divisions are performed first, followed by the addition because multiplication
and division have higher precedence (10) than addition (9). The precedence is listed from 1 to 14
with 1 being the lowest precedence and 14 being the highest.

Associativity defines which side of the expressions should be simplified first. For example the ex-
pression: 3 + 4 + 5 would be evaluated as (3 + 4) + 5 since addition is left associative; in the
expression a = b / c, the b/c would be evaluated first followed by the assignment of that result to
a since equality is right associative

4.1 Arithmetic Operators

Arithmetic operators combine two or more algebraic expressions into a single algebraic expression.
These have obvious meanings except for the pre- and post- increment and decrement operators. The
pre-increment and pre-decrement operators first increment or decrement the value of the variable
and then return the value. For example, if a = 1, then b=++a will set both b and a equal to 2.
The post-increment and post-decrement operators first return the value of the variable and then
increment or decrement the variable. For example, if a = 1, then b=a++ will set b equal to 1 and a

equal to 2. The modulus operator % calculates the integer remainder. That is both expressions are
truncated an integer value and then the remainder calculated. See the fmod function in Table 6.1
for the calculation of the floating point remainder. The tilde character ~ is used as a synonym for
multiplication to improve the aesthetics of the unit conversion system (see Chapter 7). It is more
natural for some users to type 12~metre than 12*metre.

Table 4.1: Arithmetic Operators

Syntax Description Precedence Associativity
a+b Addition 9 left
a-b Subtraction 9 left
a*b, a~b Multiplication 10 left
a/b Division 10 left
a^b, a**b Exponentiation 12 right
a%b Modulus, (remainder) 10 left
++a, a++ Pre- and Post-increment a 13 left
--a, a-- Pre- and Post-decrement a 13 left

4.2 Assignment Operators

Assignment operators combine a variable and an algebraic expression into a single algebraic expres-
sion, and also set the variable equal to the algebraic expression. Only variables can be specified on
the left-hand-side of the equal sign.

14

Table 4.2: Assignment Operators

Syntax Description Precedence Associativity
a=b The value of a is set equal to b 1 right
a+=b The value of a is set equal to a+ b 2 right
a-=b The value of a is set equal to a− b 2 right
a*=b The value of a is set equal to a ∗ b 3 right
a/=b The value of a is set equal to a/b 3 right
aˆ=b, a**=b The value of a is set equal to ab 4 right

4.3 Relational Operators

Relational operators combine two algebraic expressions into a single relational expression. Relational
expressions and operators can only be used before the question mark (?) in a conditional expression.

Table 4.3: Relational Operators

Syntax Description Precedence Associativity
a < b true if a is less than b 8 left
a > b true if a is greater than b 8 left
a <= b true if a is less than or equal to b 8 left
a >= b true if a is greater than or equal to b 8 left
a == b true if a is equal to b 8 left
a != b true if a is not equal to b 8 left

4.4 Boolean Operators

Boolean operators combine one or more relational expressions into a single relational expression. If
la and lb are two relational expressions, then:

Table 4.4: Boolean Operators

Syntax Description Precedence Associativity
la || lb true if either la or lb are true. 6 left
la && lb true if both la and lb are true. 7 left
!la true if la is false. 11 left

The evaluation of the expression is not short-circuited if the truth value can be determined early;
both sides of the expression are evaluated and then the truth of the expression is returned.

4.5 String Operators

The only supported string operator at this time is string concatenation which is denoted by //. For
example,

{a = "Hello"} {b = "World"}
{c = a // " " // b}

15

sets c equal to "Hello World". Concatenation has precedence 14 and left associativity.

16

5 Predefined Variables

A few commonly used variables are predefined in Aprepro1. These are listed below. The default
output format FORMAT is specified as a C language format string, see your C language documentation
for more information. The default output format (FORMAT) and comment (C) variables are defined
with a leading underscore in their name so they can be redefined without generating an error message.

Table 5.1: Predefined Variables

Name Value Description
PI 3.14159265358979323846 π
PI 2 1.57079632679489661923 π/2
TAU 6.28318530717958623200 2π

SQRT2 1.41421356237309504880
√
2

DEG 57.2957795130823208768 180/π degrees per radian
RAD 0.01745329251994329576 π/180 radians per degree
E 2.71828182845904523536 base of natural logarithm
GAMMA 0.57721566490153286060 γ, euler-mascheroni constant

PHI 1.61803398874989484820 golden ratio (
√
5 + 1)/2

TRUE 1
FALSE 0
VERSION Varies, string value current version of Aprepro
FORMAT "%.10g" default output format
C "$" default comment character

Note that the output format is used to output both integers and floating point numbers. Therefore,
it should use the %g format descriptor which will use either the decimal (%d), exponential (%e), or
float (%f) format, whichever is shorter, with insignificant zeros suppressed. If the output format is
set to the empty string, the the output will use as many variables as needed to fully represent the
double precision value.

The table below illustrates the effect of different format specifications on the output of the variable
PI and the value 1.0 . See the documentation of your C compiler for more information. For most
cases, the default value is sufficient.

Table 5.2: Effect of various output format specifications

Format PI Output 1.0 Output
%.10g 3.141592654 1
%.10e 3.1415926536e+00 1.0000000000e+00
%.10f 3.1415926536 1.0000000000
%.10d 1413754136 0000000000
”” 3.141592653589793 1

The comment character should be set to the character that the program which will read the processed
file uses as a comment character. The default value of "$" is the comment character used by
the SEACAS codes at Sandia National Laboratories. The -c command line option (described in
Chapter 2) changes the value of the comment variable to match the character specified on the
command line.

1The units system described in Chapter 7 also predefines several variables when it is activated

17

6 Functions

Several mathematical and string functions are implemented in Aprepro. To cause a function to be
used, you enter the name of the function followed by a list of zero or more arguments in parentheses.
For example

{sqrt(min(a,b*3))}

uses the two functions sqrt() and min(). The arguments a and b*3 are passed to min(). The
result is then passed as an argument to sqrt(). The functions in Aprepro are listed below along
with the number of arguments and a short description of their effect.

6.1 Mathematical Functions

The following mathematical functions are available in Aprepro.

Table 6.1: Mathematical Functions

Syntax Description
abs(x) Absolute value of x. |x|.
acos(x) Inverse cosine of x, returns radians.
acosd(x) Inverse cosine of x, returns degrees.
acosh(x) Inverse hyperbolic cosine of x.
asind(x) Inverse sine of x, returns degrees.
asin(x) Inverse sine of x, returns radians.
asinh(x) Inverse hyperbolic sine of x.
atan(x) Inverse tangent of x, returns radians.
atan2(x,y) Inverse tangent of x/y, returns radians.
atan2d(x,y) Inverse tangent of x/y, returns degrees.
atand(x) Inverse tangent of x, returns degrees.
atanh(x) Inverse hyperbolic tangent of x.
cbrt(x) Cube root of x. 3

√
x.

ceil(x) Smallest integer not less than x.
cos(x) Cosine of x, with x in radians
cosd(x) Cosine of x, with x in degrees
cosh(x) Hyperbolic cosine of x.
CtoF(x) Convert from degrees Celsius to degrees Fahrenheit.
d2r(x) Degrees to radians.
dim(x,y) x−min(x, y)

dist(x1,y1, x2,y2)
√
(x1 − x2)2 + (y1 − y2)2

erf(x) Error Function erf(x) = 2√
π

∫ x

0
e−t2 dt

erfc(x) Complementary Error Function 1− erf(x)
exp(x) Exponential ex

expm1(x) Exponential. Accurate version of ex − 1.0 for small x.
find word(word,svar,del) Find 1-based index of word in svar. Words are separated by one or

more of the characters in the string variable del. Returns 0 if word
is not found.

floor(x) Largest integer not greater than x.
fmod(x,y) Floating-point remainder of x/y.

18

Table 6.1: Mathematical Functions

Syntax Description
FtoC(x) Convert from degrees Fahrenheit to degrees Celsius.

hypot(x,y)
√
x2 + y2.

int(x), [x] Integer part of x truncated toward 0.
julday(mm, dd, yy) Julian day corresponding to mm/dd/yy.
juldayhms(mm, dd, yy, hh, mm, ss) Julian day corresponding to mm/dd/yy at hh:mm:ss
lgamma(x) log(Γ(x)).
ln(x) Natural (base e) logarithm of x.
log(x) Natural (base e) logarithm of x.
log10(x) Base 10 logarithm of x.
log1p(x) log(1 + x) Accurate even for very small values of x
max(x,y) Maximum of x and y.
min(x,y) Minimum of x and y.
nint(x) Rounds x to nearest integer. < 0.5 down; >= 0.5 up.
polarX(r,a) r ∗ cos(a), a is in degrees
polarY(r,a) r ∗ sin(a), a is in degrees
pow(x,y) Power xy.
r2d(x) Radians to degrees.
rand(xl,xh) Random value between xl and xh; uniformly distributed.
rand lognormal(m,s) Random value with lognormal distribution with mean m and std-

dev s.
rand normal(m,s) Random value normally distributed with mean m and stddev s.
rand weibull(a, b) Random value with weibull distribution with α = a and β = b.
seconds() Returns the number of seconds since the epoch. The value is usefult

as the seed value in the function srand.
sign(x,y) x ∗ sgn(y)
sin(x) Sine of x, with x in radians.
sind(x) Sine of x, with x in degrees.
sinh(x) Hyperbolic sine of x
sqrt(x) Square root of x.

√
x

srand(seed) Seed the random number generator with the given integer value.
At the beginning of Aprepro execution, srand() is called with
the current time as the seed.

strtod(svar) Returns a double-precision floating-point number equal to the value
represented by the character string pointed to by svar.

tan(x) Tangent of x, with x in radians.
tand(x) Tangent of x, with x in radians.
tanh(x) Hyperbolic tangent of x.
tgamma(x) Gamma Function Γ(x) =

∫∞
0

tx−1e−tdt.

Vangle(x1,y1,x2,y2) Angle (radians) between vector x1î+ y1ĵ and x2î+ y2ĵ.

Vangled(x1,y1,x2,y2) Angle (degrees) between vector x1î+ y1ĵ and x2î+ y2ĵ.
word count(svar,del) Number of words in svar. Words are separated by one or more of

the characters in the string variable del.

Table 6.2: String Functions

Syntax Description
DUMP() Output a list of all defined variables and their value.

19

Table 6.2: String Functions

Syntax Description
DUMP JSON() Output a list of all defined variables and their value in JSON for-

mat.
DUMP FUNC() Output a list of all double and string functions recognized by

Aprepro.
DUMP PREVAR() Output a list of all predefined variables and their value.
IO(x) Convert x to an integer and then to a string. Can be used to output

integer values if your output format (FORMAT) is set to something
that doesn’t output integers correctly.

Units(svar) See Chapter 7. svar is one of the defined units systems: ’si’, ’cgs’,
’cgs-ev’, ’shock’, ’swap’, ’ft-lbf-s’, ’ft-lbm-s’, ’in-lbf-s’

error(svar) Outputs the string svar to stderr and then terminates the code
with an error exit status.

execute(svar) svar is parsed and executed as if it were a line read from the input
file.

exodus info(filename, prefix) Open the Exodus file and return a string which is the concatena-
tion of all Exodus info lines that begin with “prefix”. The prefix
is stripped from the line.

exodus info(filename, begin, end) Open the Exodus file and return a string which is the concate-
nation of all Exodus info lines following the line that matches
“begin” up to the line that matches “end”.

exodus meta(filename) Open the Exodus file and create several variables based on the
metadata in the Exodus file.

extract(s, b, e) Return substring [b,e). b is included; e is not. If b not found, return
empty; If e not found, return rest of string. If b empty, start at
beginning; if e empty, return rest of string.

file to string(fn) Opens the file specified by fn and returns the contents as a multi-
line string.

get date() Returns a string representing the current date in the form
YYYY/MM/DD.

get iso date() Returns a string representing the current date in the form
YYYYMMDD.

get time() Returns a string representing the current time in the form
HH:MM:SS.

get word(n,svar,del Returns a string containing the nth word of svar. The words are
separated by one or more of the characters in the string variable
del

getenv(svar) Returns a string containing the value of the environment variable
svar. If the environment variable is not defined, an empty string is
returned.

help() Tell how to get help on variables, functions, . . .
include path(path) Specify an optional path to be prepended to a filename when open-

ing a file. Can also be specified via the -I command line option
when executing aprepro.

import(svar) include contents of the file specified by the value of svar. See Sec-
tion 6.2.2 for details.

include(file) include contents of the file. See Section 6.2.2 for details.
cinclude(file) conditionally include contents of the file. See Section 6.2.2 for

details.

20

Table 6.2: String Functions

Syntax Description
import(svar) include contents of the file pointed to by svar. See Section 6.2.2 for

details.
output(filename) Creates the file specified by filename and sends all subsequent out-

put from aprepro to that file. Calling output(s̈tdout)̈ will close
the current output file and return output to the terminal (standard
output).

output append(fn) If file with name fn exists, append output to it; otherwise create
the file and send all subsequent output from aprepro to that file.

rescan(svar) The difference between execute(sv1) and rescan(sv2) is that
sv1 must be a valid expression, but sv2 can contain zero or more
expressions.

to lower(svar) Translates all uppercase characters in svar to lowercase. It modifies
svar and returns the resulting string.

tolower(svar) Translates all uppercase characters in svar to lowercase. It modifies
svar and returns the resulting string.

to string(x) Returns a string representation of the numerical variable x. The
variable x is unchanged.

tostring(x) Returns a string representation of the numerical variable x. The
variable x is unchanged.

to upper(svar) Translates all lowercase character in svar to uppercase. It modifies
svar and returns the resulting string.

toupper(svar) Translates all lowercase character in svar to uppercase. It modifies
svar and returns the resulting string.

version() Return the version string. (See also the VERSION variable).

Table 6.3: Array Functions

Syntax Description
csv array(filename, [skip]) Create a 2D array from the data in a CSV (Comma-Separated-

Value) file optionally skipping rows. If skip is an integer, then skip
that many rows; if skip is a character, then skip lines beginning
with that character.

array from string(string, delim) Create a 1D array from the data in a delimited string. The array
double values are separated by one or more of the characters in the
string variable delim.

identity(size) Create a 2D identity array with size rows and columns. The ele-
ments along the diagonal are equal to 1.0

linear array(init, final, count) Create a 1D array of count rows. Values are linearly spaced from
init to final.

make array(rows, cols, init=0) Create a 2D array of size rows by cols initialized to init. The array
is initialized to 0 if init is not specified.

transpose(array) Return the transpose of input array

21

Table 6.4: Functions with Array variables as parameters

Syntax Description
cols(array) Returns the number of columns in the array array.
rows(array) Returns the number of rows in the array array.
print array(array) Prints the data in the array array.

The following example shows the use of some of the string functions. The input:

{t1 = "ATAN2"}
{t2 = "(0, -1)"}
{t3 = tolower(t1//t2)}
{execute(t3)}

produces the output:

ATAN2

(0, -1)

atan2(0, -1) The variable t3 is equal to the string atan2(0,-1)

3.141592654 The result is the same as executing {atan2(0, -1)}

This is admittedly a very contrived example; however, it does illustrate the workings of several of
the functions. In the example, an expression is constructed by concatenating two strings together
and converting the resulting string to lowercase. This string is then executed and simply prints the
result of evaluating the expression.

The following example uses the rescan function to illustrate a basic macro capability in Aprepro.
The example calculates the coordinates of eleven points (Point1 . . . Point11) equally spaced about
the circumference of a 180 degree arc of radius 10.

{ECHO(OFF)} {num = 0}
{rad = 10}
{nintv = 10}
{nloop = nintv + 1}
{line = ’Define {"Point"//tostring(++num)}, {polarX(rad, (num-1) *

180/nintv)} {polarY(rad, (num-1)*180/nintv)}’}
{ECHO(ON)}
{loop(nloop)}
{rescan(line)}
{endloop}

Output:

Define Point1, 10 0

Define Point2, 9.510565163 3.090169944

Define Point3, 8.090169944 5.877852523

Define Point4, 5.877852523 8.090169944

Define Point5, 3.090169944 9.510565163

Define Point6, 6.123233765e-16 10

Define Point7, -3.090169944 9.510565163

Define Point8, -5.877852523 8.090169944

Define Point9, -8.090169944 5.877852523

Define Point10, -9.510565163 3.090169944

Define Point11, -10 1.224646753e-15

22

Note the use of the ECHO(OFF|ON) block to suppress output during the initialization phase, and the
loop construct to automatically repeat the rescan line. The variable num is converted to a string
after it is incremented and then concatenated to build the name of the point. In the definition of the
variable line, single quotes are first used since this is a multi-line string; double quotes are then used
to embed another string within the first string. To modify this example to calculate the coordinates
of 101 points rather than eleven, the only change necessary would be to set {nintv=100}.

6.2 Additional Functions

6.2.1 [var] or [expression]

Surrounding a variable or expression by square brackets will return the integer value of that variable
or expression truncated toward zero. For example [sqrt(2)] will return the value 1.

6.2.2 File Inclusion

Aprepro can read input from multiple files using the include(), cinclude(), and import()

functions. If a line of the form:

{include("filename ")}
{include(string variable)}
{import(string expression)}
is read, Aprepro will open and begin reading from the file filename. A string variable can be used
as the argument instead of a literal string value. In the import() command, the argument can be
an expression that evaluates to a string, a string variable, or a literal string. For example:

{base = "filename"}
{ext = "apr"}
{import(base // "." // ext)}

Will result in the contents of the file filename.apr being included.

When the end of the file is reached, it will be closed and Aprepro will continue reading from the
previous file. The difference between include(), import(), and cinclude() is that if filename
does not exist, include() and import() will terminate Aprepro with a fatal error, but cinclude()
will just write a warning message and continue with the current file. The cinclude() function can
be thought of as a conditional include, that is, include the file if it exists. Multiple include files are
allowed and an included file can also include additional files. This option can be used to set variables
globally in several files. For example, if two or more input files share common points or dimensions,
those dimensions can be set in one file that is included in the other files.

If ECHO(OFF) is in effect during in an included file, ECHO(ON) will automatically be executed at the
end of the included file.

6.2.3 Conditionals

Portions of an input file can be conditionally processed through the use of the if(expression),
elseif(expression), else, and endif construct.1 The syntax is:

1The Ifdef(expression) and Ifndef(expression) construct is deprecated. Please use if(expression) and
if(!expression) instead.

23

{if(expression)}
... Lines processed if ’expression’ is true or non-zero.

{elseif(expression2)}
... Lines processed if ’expression’ is false and ’expression2’ is true.

{else}
... Lines processed if both ’expression’ and ’expression2’ are false.

{endif}

The elseif() and else are optional. Note that if expression is a simple variable, then its value will
be zero or false if it is undefined; a zero value evaluates to false and a non-zero value is true. The
if construct can be nested multiple levels. A warning message will be printed if improper nesting
is detected. The if(expression), elseif(expression), else, and endif are the only text parsed
on a line. Text that follows these on the same line is ignored. For example:

{if(a > 10 && b < 10)} This will be ignored no matter what

... Lines processed if a > 10 and b < 10.

{endif}

6.2.4 Switch Statements

The switch statement is a control construct which allows the value of a variable or expression to
change the control flow via a multi-way branch. The construct is begun with a switch(expression)
statement followed by one or more case(expression) statements and an optional default state-
ment. The construct is ended with an endswitch statement. The expression in the switch(expression)
statement is evaluated and compared to each case(expression) statement in order. If the values
of the two expressions are equal, then the code following that case(expression) is evaluated up
to the next case() or default statement. If the expressions in more than one case() match the
initial switch() expression, only the first one will be activated. If none of the case() expressions
match the switch() expression, then the code following the default command will be evaluated.
An example of the syntax is:

{a = 10*PI}
{switch(10*PI + sin(0))}
... This is ignored since it is after the switch, but before any case() statements

{case(1)}
... This is not executed since 1 is not equal to 10*PI+sin(0)

{case(a)}
... This is executed since a matches the value of 10*PI+sin(0)

{case(10*PI+sin(0))}
... This is not executed since a previous case was executed.

{default}
... This is not executed since a previous case was executed.

{endswitch}
... This is executed since the switch construct

is finished.

Switch constructs cannot be nested, but a switch() can be used inside an if() construct and
an if() can be used inside a case() construct. The switch(expression), case(expression),
default, and endswitch are the only text parsed on a line. Text that follows these on the same
line is ignored.

24

6.2.5 Loops

Repeated processing of a group of lines can be controlled with the loop(control), and endloop
commands. The syntax is:

{loop(variable, index variable, initial value, increment)}
... Process these lines variable times.

{endloop}

The number of iterations of the loop is specified by variable which can be an explicit integer value,
or an existing variable. If it is a variable, then the truncated integer value of the variable will be
used. For example, if the variable contains the value 3.14, then the loop will be iterated 3 times.

The optional index variable will be automatically initialized to the optional initial value (0 if not
specified) at the beginning of the loop and incremented by the optional increment (1 if not specified)
value each time through the loop. Loops can be nested.

If the index variable is not specified in the loop command, then the variable loop # will be used
where “#” represents the one-based nesting level of the current loop.

A numerical variable or constant must be specified as the loop control specifier. You cannot use an
algebraic expression such as

{loop(3+5)} ... INVALID

The endloop command must be on a line by itself with no other text except optional whitespace
(spaces or tabs).

These are all valid loop invocations:

{loop(variable, index variable, initial value, increment)}

{loop(variable, index variable, initial value)}
... same as {loop(variable, index variable, initial value, 1)}

{loop(variable, index variable)}
... same as {loop(variable, index variable, 0, 1)}

{loop(variable)}
... same as {loop(variable, loop 1, 0, 1}

A couple examples of using loops are shown here:

{loop(10, i, 1, 2)}
... These lines will be executed 10 times.

... The variable i will have the values 1, 3, 5, ..., 19.

{endloop}

{outer=10} {inner=4}
{loop(outer, i)}
{loop(inner)}
... These lines will be executed $10 * 4$ times.

... The variable i will have the values 0 through 9.

... The variable loop 2 will have the values 0, 1, 2, 3 and incremented in each iteration of the inner loop.

{endloop}
{endloop}

25

6.2.6 ECHO

The printing of lines to the output file can be controlled through the use of the ECHO(OFF) and
ECHO(ON) commands. The syntax is:

{ECHO(OFF)}
... These lines will be processed, but not printed to output

{ECHO(ON)}
... These lines will be both processed and printed to output.

ECHO will automatically be turned on at the end of an included file. The commands ECHO and NOECHO

are synonyms for ECHO(ON) and ECHO(OFF).

6.2.7 Suppress individual expression output

In addition to the ECHO option shown in the previous section, it is possible to suppress the echoing of
the results of an expression by surrounding the expression with double braces instead of the normal
single braces. For example:

{{ i = 0}}

Will disable the echoing of that expression (although the newline will still be echoed).

6.2.8 VERBATIM

The printing of all lines to the output file without processing can be controlled through the use of
the VERBATIM(ON) and VERBATIM(OFF) commands. The syntax is:

{VERBATIM(ON)}
... These lines will be printed to output, but not processed

{VERBATIM(OFF)}
... These lines will be printed to output and processed

NOTE: there is a major difference between the ECHO/NOECHO commands, the Ifdef/Endif commands,
and the VERBATIM(ON|OFF) commands:

• ECHO(ON|OFF) Lines processed, but not printed if ECHO(OFF)

• Ifdef/Endif Lines not processed or printed if in Ifndef block

• VERBATIM(ON|OFF) Lines not processed, but are printed.

6.2.9 IMMUTABLE

Variables can either be created as mutable or immutable. By default, all variables created during a
run of aprepro are mutable unless the --immutable or -X command line option is used to execute
Aprepro. An IMMUTABLE block can also be used to change Aprepro such that all variables are
created as immutable. The syntax is:

{IMMUTABLE(ON)}
... All variables created will be immutable

26

{IMMUTABLE(OFF)}
... The mutable/immutable state changes back to the default which

is typically mutable unless Aprepro executed with the

--immutable or -X options.

Note that any variables created as immutable are still immutable following the IMMUTABLE(OFF)

command.

6.2.10 Output File Specification

The output function can be used to change the file to which Aprepro is outputting the processed
data. The syntax is: {output("filename")}, where filename is the name of the new output file.
A string variable can be used as the function argument. The previous output file is closed. An error
message is written and the code terminates if the file cannot be opened. If output("stdout") is
specified, then the current output file is closed and output is again written to the standard output
which is where output is written by default.

6.2.11 Exodus Metadata Extraction

Aprepro can parse the metadata from a binary Exodus [2] file and create several variables which
can then be used for calculations or decisions. The function syntax is exodus meta(filename). The
argument to the function is a string containing the filename of the Exodus file. If the file does not
exist in the current directory, Aprepro will prepend the path specified by the --include or -I

command line option.

The following scalar variables will be defined:

Table 6.5: Exodus Scalar Variables

Variable Description
ex dimension Spatial dimension
ex node count Number of nodes
ex element count Number of elements
ex block count Number of element blocks
ex sideset count Number of sidesets
ex nodeset count Number of nodesets
ex timestep count Number of timesteps
ex version Version of the Exodus database

The following string variables will be defined if the model contains one or more of the specific entity
type. The strings will be a comma-separated concatenation of the names of the entity. The get word

function can be used to extract a specific sub-string.

Table 6.6: Exodus String Variables

Variable Description
ex title The title of the database
ex block names Element Block names. Will be “block ” + block id if no names on

the database.
ex block topology The topology of the element blocks. Converted to all lowercase.

27

Table 6.6: Exodus String Variables

Variable Description
ex sideset names Sideset names. Will be “sideset ” + sideset id if no names on the

database.
ex nodeset names Nodeset names. Will be “nodeset ” + nodeset id if no names on

the database.

The following array variables will be defined if the model contains one or more of the specific entity
type.

Table 6.7: Exodus Array Variables

Variable Rows Columns Description
ex block ids ex block count 1 Element Block Ids.
ex block info ex block count 4 Element Block info: id, number of elements in block, number of

nodes per element, number of attributes.
ex sideset ids ex sideset count 1 Sideset Ids.
ex sideset info ex sideset count 3 Sideset info: id, number of faces in sideset, number of distribution

factors.
ex nodeset ids ex nodeset count 1 Nodeset Ids.
ex nodeset info ex nodeset count 3 Nodeset info: id, number of nodes in nodeset, number of distribu-

tion factors.
ex timestep times ex timestep count 1 Timestep times.

The following shows an example of the variables which are defined:

exodus meta("filename.e")

DUMP()

Element Block IDs:

print array(transpose(ex block ids))

Element Block Info: (id, num, nnpe, nattrib)

print array(ex block info)

$ Variable = Value

$ ex block count = 8

$ ex nodeset ids (array) rows = 6, cols = 1

$ ex block names = "block 8,block 7,block 6,block 5,block 4,block 3,block 2,block 1"

$ ex block topology = "hex,hex,hex,hex,hex,hex,hex,hex"

$ ex nodeset info (array) rows = 6, cols = 3

$ ex sideset count = 0

$ ex dimension = 3

$ ex element count = 64

$ ex nodeset names = "nodeset 10,nodeset 100,nodeset 20,nodeset 200,nodeset 30,nodeset 300"

$ ex nodeset count = 6

$ ex block ids (array) rows = 8, cols = 1

$ ex block info (array) rows = 8, cols = 4

$ ex timestep times (array) rows = 11, cols = 1

$ ex version = 2.029999971

$ ex timestep count = 11

$ ex title = "Sierra output: dummy title"

28

$ ex node count = 125

Element Block IDs:

8 7 6 5 4 3 2 1

Element Block Info: (id, num, nnpe, nattrib)

8 8 8 0

7 8 8 0

6 8 8 0

5 8 8 0

4 8 8 0

3 8 8 0

2 8 8 0

1 8 8 0

6.2.12 Exodus Info Records Extraction

Aprepro can extract all or a portion of the “information records” from a binary Exodus file and
return the results as a string variable.

There are two forms of the function. The first function has the syntax: exodus info(filename, prefix).
This will read the information records from the Exodus database specified by the string variable
filename and search for lines that begin with the specified prefix. If a line is found, the prefix will be
stripped from the line and the remaining characters on the line will be concatenated onto the return
string followed by a newline character.

The second function has the syntax: exodus info(filename, begin, end). This will read the
information records from the Exodus database specified by the string variable filename and search
for a line that matches the string variable begin. It will then append all subsequent information lines
onto the return string until a line that matches the string variable end or it reaches the end of the
information records. If there is another line matching begin, it will resume appending lines to the
return string.

The returned string can then be operated on as a normal Aprepro variable.

29

7 Units Conversion System

7.1 Introduction

The units conversion system as implemented in Aprepro defines several variables that are abbrevi-
ations for unit quantities. For example, if the output format for the current unit system was inches,
the variable foot would have the value 12. Therefore, an expression such as 8*foot would be equal
to 96 which is the number of inches in 8 feet1.

Seven consistent units systems have been defined including four metric based systems: si, cgs,
cgs-ev, and shock; and three english-based systems: in-lbf-s, ft-lbf-s, and ft-lbm-s. The
output units for these unit systems are shown in Table 8 (metric) and Table 9 (english). A list of
the defined units abbreviations is given in Table 10.

In addition to the definition of the conversion factors, several string variables are also defined which
describe the output format of the current units system. For example, the string variable dout defines
the output format for density units. For the in-lbf-sec units system, dout = "lbf-sec^2/in^4"

which is the output format for densities in this system. The string variables can be used to document
the Aprepro output. The string variable names are listed in the last column of Table 8 and Table
9.

Table 7.1: Units Systems and Corresponding Output Format–Metric

Quantity si cgs cgs-ev shock string
Length metre centimetre centimetre centimetre lout
Mass kilogram gram gram gram mout
Time second second second micro-sec tout
Temperature kelvin kelvin eV kelvin Tout
Velocity metre/sec cm/sec cm/sec cm/usec vout
Acceleration metre/sec2 cm/sec2 cm/sec2 cm/usec2 aout
Force newton dyne dyne g-cm/usec2 fout
Volume metre3 cm3 cm3 cm3 Vout
Density kg/m3 g/cc g/cc g/cc dout
Energy joule erg erg g-cm2/usec3 eout
Power watt erg/sec erg/sec g-cm2/usec4 Pout
Pressure pascal dyne/cm2 dyne/cm2 Mbar pout

Table 7.2: Units Systems and Corresponding Output Format–English

Quantity in-lbf-s ft-lbf-s ft-lbm-s string
Length inch foot foot lout
Mass lbf-sec2/in slug pound-mass mout
Time second second second tout
Temperature rankine rankine rankine Tout
Velocity inch/sec foot/sec foot/sec vout
Acceleration inch/sec2 foot/sec2 foot/sec2 aout
Force pound-force pound-force poundal fout
Volume inch3 foot3 foot3 Vout

1This can also be written as 8˜foot since ˜ has been defined to be the same as ∗ (multiplication).

30

Density lbf-sec2/in4 slug/ft3 lbm/ft3 dout
Energy inch-lbf foot-lbf ft-poundal eout
Power inch-lbf/sec foot-lbf/sec ft-poundal/sec Pout
Pressure lbf/in2 lbf/ft2 poundal/ft2 pout

The units definitions are accessed through the Units function in Aprepro:

{Units("unit system")}

where unit system is one of the strings listed in the first row of the previous two tables.

7.2 Defined Units Variables

In the following table, the first column lists the variables that are defined in the Aprepro unit
system and the second column is a short description of the unit. All units variables are defined in
terms of the five SI Base Units metre (length), second (time), kilogram (mass), temperature (kelvin),
and radian (angle)2. The bolded rows delineate the type of unit variable and the base quantities
used to define it where L is length, T is time, M is mass, and t is temperature. For example density
is defined in terms of M/L3 which is mass/ length3.

Table 7.3: Defined Units Variables

Length [L]
m, meter, metre Metre (base unit)

cm, centimeter, centimetre Metre / 100
mm, millimeter, millimetre Metre / 1,000
um, micrometer, micrometre Metre / 1,000,000
km, kilometer, kilometre Metre * 1,000
in, inch Inch
ft, foot Foot
yd, yard Yard
mi, mile Mile
mil Mil (inch/1000)

Time [T]
second, sec Second (base unit)

usec, microsecond Second / 1,000,000
msec, millisecond Second / 1,000
minute Minute
hr, hour Hour
day Day
yr, year Year = 365.25 days
decade 10 Years
century 100 Years

Velocity [L/T]

2The radian is actually a SI Supplementary Unit since it has not been decided whether it is a Base Unit or a
Derived Unit. There are three other SI Base Units, the candela, ampere, and mole, but they are not yet used in the
Aprepro units system.

31

mph Miles per hour
kph Kilometres per hour
mps Metre per second
kps Kilometre per second
fps Foot per second
ips Inch per second

Acceleration [L/T 2]
ga Gravitational acceleration

Mass [M]
kg Kilogram (base unit)

g, gram Gram
lbm Pound (mass)
slug Slug
lbfs2pin Lbf-sec2/in

Density [M/L3]
gpcc Gram / cm3

kgpm3 Kilogram / m3

lbfs2pin4 Lbf-sec2 / in4

lbmpin3 Lbm / in
lbmpft3 Lbm / ft3

slugpft3 Slug / ft3

Force [ML/T 2]
N, newton Newton = 1 kg-m/sec2

dyne Dyne = newton/10,000
gf Gram (force)
kgf Kilogram (force)
lbf Pound (force)
kip Kilopound (force)
pdl, poundal Poundal
ounce Ounce = lbf / 16

Energy [ML2/T 2]

J, joule Joule = 1 newton-metre
ftlbf Foot-lbf
erg Erg = 1e-7 joule
calorie International Table Calorie
Btu International Table Btu
therm EEC therm
tonTNT Energy in 1 ton TNT
kwh Kilowatt hour

Power [ML2/T 3]
W, watt Watt = 1 joule / second
Hp Elec. Horsepower (746 W)

32

Temperature [t]
degK, kelvin Kelvin (Base Unit)

degC Degree Celsius
degF Degree Fahrenheit
degR, rankine Degree Rankine
eV Electron Volt

Pressure [M/L/T 2]
Pa, pascal Pascal = 1 newton / metre2

MPa Megapascal
GPa Gigapascal
bar Bar
kbar Kilobar
Mbar Megabar
atm Standard atmosphere
torr Torr = 1 mmHg
mHg Metre of mercury
mmHg Millimetre of mercury
inHg Inch of mercury
inH2O Inch of water
ftH2O Foot of water
psi Pound per square inch
ksi Kilo-pound per square inch
psf Pound per square foot

Volume [L3]
liter Metre3 / 1000
gal, gallon Gallon (U.S.)

Angular
rad Radian (base unit)

rev Full circle = 360 degree
deg, degree Degree
arcmin Arc minute = 1/60 degree
arcsec Arc second = 1/360 degree
grade Grade = 0.9 degree

The conversion expressions were obtained from References [3], [4], [5], and [6].

7.3 Physical Constants

The units system also defines several physical constants which are listed in the following table.
The values for these were obtained from https://en.wikipedia.org/wiki/List_of_physical_

constants. Although the Aprepro units system should adjust the values correctly for different
systems, it is recommended that the “si” system be used to avoid any possible conversion errors.

Table 7.4: Physical Constants

33

https://en.wikipedia.org/wiki/List_of_physical_constants
https://en.wikipedia.org/wiki/List_of_physical_constants

Quantity Value
Avogadro constant 6.02214076x1023 /mol
Bohr magneton 9.2740100783x10−24 J/T
Bohr radius 5.29177210903x10−11 m
Boltzmann constant 1.380649x10−23 J/◦K
Coulomb constant 8.9875517923x109 Nm2 · C−2

Faraday constant 96485.3321233100184 C/mol
Fermi coupling constant 1.166378710x10−5 GeV −2

Hartree energy 4.3597447222071x10−18 J
Josephson constant 483597.8484x109 Hz/V
Newtonian constant of gravitation 6.67430x10−11 m3/kg · s−2

Gravitational constant 6.67430x10−11 m3/kg · s−2

Planck constant 6.62607015x10−34 J/Hz
Rydberg constant 10973731.568160 m
Rydberg unit of energy 2.1798723611035x10−18 J
Stefan Boltzmann constant 5.670374419x10−8 W ·m−2 · ◦K−4

Thomson cross section 6.6524587321x10−29 m2

W to Z mass ratio 0.88153
Wien entropy displacement law constant 3.002916077x10−3 m · ◦K
Wien frequency displacement law constant 5.878925757x1010 Hz/◦K
Wien wavelength displacement law constant 2.897771955x10−3 m · ◦K
atomic mass constant 1.66053906660x10−27 kg
atomic mass of carbon 12 1.99264687992x10−26 kg
characteristic impedance of vacuum 376.730313668 Ω
classical electron radius 2.8179403262x10−15 m
conductance quantum 7.748091729x10−5 S
cosmological constant 1.089x10−52 m−2

electron g factor −2.00231930436256
electron mass 9.1093837015x10−31 kg
elementary charge 1.602176634x10−19 C
fine structure constant 7.2973525693x10−3

first radiation constant 3.741771852x10−16 W ·m2

hyperfine transition frequency of 133Cs 139192631770 Hz
inverse conductance quantum 12906.40372 Ω
inverse fine structure constant 137.035999084
magnetic flux quantum 2.067833848x10−15 V · s
molar Planck constant 3.9903127128934314x10−10 J · s/mol
molar gas constant 8.31446261815324 J/mol/◦K
molar mass constant 0.99999999965x10−3 kg/mol
molar mass of carbon 12 11.9999999958x10−3 kg/mol
muon g factor −2.0023318418
muon mass 1.883531627x10−28 kg
neutron mass 1.67492749804x10−27 kg
nuclear magneton 5.0507837461x10−27 J/T
proton g factor 5.5856946893
proton mass 1.67262192369x10−27 kg
proton to electron mass ratio 1836.15267343
quantum of circulation 3.6369475516x10−4 m2/s
reduced Planck constant 1.054571817x10−34 J · s
sec radiation constant 1.438776877x10−2 m · ◦K

34

speed of light in vacuum 299792458 m/s
tau mass 3.16754x10−27 kg
top quark mass 3.0784x10−25 kg
vacuum electric permittivity 8.8541878128x10−12 F/m
vacuum magnetic permeability 1.25663706212x10−6 N ·A−2

von Klitzing constant 25812.80745 Ω
weak mixing angle 0.22290

7.4 Usage

The following example illustrates the basic usage of the Aprepro units conversion utility.

$ Aprepro Units Utility Example

$ {{Units(‘‘shock’’)}} ...Select the shock units system, use double brace to suppress echoing

$ NOTE: Dimensions - {lout}, {mout}, {dout}, {pout}
...This will document what quantities are used in the file after it is run through Aprepro

{len1 = 10.0 * inch} ...Define a length in an english unit (inches)

$ {len2 = 12.0~inch} ...~ is a synonym for * (multiplication)

Material 1, Elastic Plastic, {1890~kgpm3} $ {dout}
Youngs Modulus = {28.3e6~psi} $ pout

Yield Stress = {30~ksi}
Initial Veclocity = {10~mph} $ vout

...Define the density and material parameters in whatever units they are available

End

Point 100 {0.0} {0.0}
Point 110 {len1} {0.0}
Point 120 {len1} {len2}
Point 130 {0.0} {len1}

The output from this example input file is:

$ Aprepro Units Utility Example

$ NOTE: Dimensions - cm, gram, g/cc, Mbar ...The documentation of what quantities this file uses

$ 25.4

$ 30.48

Material 1, Elastic Plastic, 1.89 $ g/cc

Youngs Modulus = 1.951216314 $ Mbar

Yield Stress = 0.002068427188 ...All material parameters are now in consistent units

Initial Velocity = 0.00044704 $ cm/usec

End

Point 100 0 0

Point 110 25.4 0

Point 120 25.4 30.48

Point 130 0 25.4 ...Lengths have all been converted to centimetres

The same input file can be used to output in SI units simply by changing Units command from shock
to si. The output in SI units is:

$ Aprepro Units Utility Example

$ NOTE: Dimensions - meter, kilogram, kg/m^3, Pa

...Quantities are now output in standard SI units

35

$ 0.254

$ 0.3048

Material 1, Elastic Plastic, 1890 $ kg/m^3

Youngs Modulus = 1.951216314e+11 $ Pa

Yield Stress = 206842718.8

Initial Velocity = 4.4704 $ meter/sec

End

Point 100 0 0

Point 110 0.254 0

Point 120 0.254 0.3048

Point 130 0 0.254 ...Lengths have all been converted to metres

7.5 Additional Comments

A few additional comments and warnings on the use of the units system are detailed below.

Using only single braces for the {Units(“unit system”)} function will print out the contents of the
units header and conversion files. Each line in the output will be preceded by the current comment
character which is $ by default.

The comment character can be changed by invoking Aprepro with the -c option. For example
aprepro -c# input file output file will change the comment character at the beginning of the
lines to #.

The temperature conversions are only valid for relative temperatures, for example, 100˜degC is equal
to 180˜degF, not 212˜degF. The functions CtoF(x) and FtoC(x) can be used to convert absolute
temperatures. For example,

100 C = {CtoF(100)} F

98.6 F = {FtoC(98.6)} C

produces the output:

100 C = 212 F

98.6 F = 37 C

Several variables are defined in the units system; they are all immutable variables, so it is not possible
to redefine their values. However, if you inadvertently are using a variable with the same name as a
variable defined in the units system, you may get the incorrect value of that variable since it cannot
be redefined from the value set by the units system. You can enter the command DUMP() to see a
list of all defined variables and their current value.

The Aprepro variable UNITS SYSTEM is defined to the name of the current units system that is
loaded or “none” if no units system has been loaded.

36

8 Error, Warning, and Informational
Messages

Several error, warning, and informational messages will be printed by Aprepro if certain conditions
are encountered during the parsing of an input file. The messages are of the form:

Aprepro: Type: Message (file, line line#)

Where Type is ERROR for an error message, WARN for a warning message, or INFO for an informational
message; Message is an explanation of the problem, file is the filename being processed at the
time of the message, and line# is the number of the line within that file. Error messages are always
output, Warning messages are output by default and can be turned off by using the -W or --warning
command option, and Informational messages are turned off by default and can be turned on by
using the -M or --message command option. (See Chapter refch:execution.)

8.1 Error Messages

Aprepro: ERROR: parse error (file, line line#) An unrecognized or ill-formed expression has
been entered. Parsing of the file continues following this expression.

Aprepro: ERROR: Can’t open ’file’: No such file or directory The file specified in the in-
clude or import command cannot be found or does not exist. Aprepro will terminate processing
following this error message.

Aprepro: ERROR: Can’t open ’file’: Permission denied The file specified in the include,
import, or output command could not be opened due to insufficient permission. Aprepro
will terminate processing following this error message.

Aprepro: ERROR: Improperly Nested ifdef/ifndef statements (file, line line#) An invalid
ifdef/ifndef block has been detected. Typically this is caused by an extra endif or else state-
ment.

Aprepro: ERROR: Zero divisor (file, line line#) An expression tried to divide by zero. The
expression is given the value of the dividend and parsing continues.

Aprepro: ERROR: Invalid units system type. Valid types are: ’si’, ’cgs’, ’cgs-ev’, ’shock’, ’swap’, ’ft-lbf-s’, ’ft-lbm-s’, ’in-lbf-s’
The units system specified in the command could not be found. This is most likely due to a
misspelling of the units system name.

Aprepro: ERROR: function (file, line line#) DOMAIN error: Argument out of domain
The arithmetic function function has been passed an invalid argument. For example, the above
error would be printed for each of the expressions:

{sqrt(-1.0)} {log(0.0)} {asin(1.1)}

since the arguments are out of the valid domain for the function. The value returned by the
function following an error is system-dependent. See the function’s man page on your system
for more information.

37

8.2 Warning Messages

Aprepro: WARN: Undefined variable ’variable’ (file, line line#) A variable is used in an
expression before it has been defined. The variable is set equal to zero or the null string ("")
and parsing continues.

Aprepro: WARN: Variable ’variable’ redefined (file, line line#) A previously defined vari-
able is being set equal to a new value.

Aprepro: (IMMUTABLE) Variable ’variable’ is immutable and cannot be modified (file, line line#)
The value of a variable that was created as an immutable variable was modified. No value
will be returned by the expression. See page 11 and page 6.2.9 for a description of immutable
variables.

8.3 Informational Messages

Aprepro: INFO: Included File: ’filename’ (file, line line#) The file filename is being included
at line line# of file file. This message will also be printed during the execution of a loop block
since temporary files are used to implement the looping function, and during the execution of
the units conversion and material database access routines.

38

9 Examples

9.1 Mesh Generation Input File

The first example shown in this section is the point definition portion of an input file for a mesh
generation code. First, the locations of the arc center points 1, 2, and 5 are specified. Then, the
radius of each arc is defined ({Rad1}, {Rad2}, and {Rad5}). Note that the lines are started with a
dollar sign, which is a comment character to the mesh generation code. Following this, the locations
of points 10, 20, 30, 40, and 50 are defined in algebraic terms. Then, the points for the inner wall
are defined simply by subtracting the wall thickness from the radius values.

Title

Example for Aprepro

$ Center Points

Point 1 {x1 = 6.31952E+01} {y1 = 7.57774E+01}
Point 2 {x2 = 0.00000E+00} {y2 = -3.55000E+01}
Point 5 {x5 = 0.00000E+00} {y5 = 3.62966E+01}
$ Width = {Width = 3.0}
... Wall thickness

$ Rad5 = {Rad5 = 207.00}
$ Rad2 = {Rad2 = 203.2236}
$ Rad1 = {Rad1 = Rad2 - dist(x1,y1; x2,y2)}
$ Angle between Points 2 and 1: {Th12 = atan2d((y1-y2),(x1-x2))}
Point 10 0.00 {y5 - Rad5}
Point 20 {x20 = x1+Rad1} {y5-sqrt(Rad5^2-x20^2)}
Point 30 {x20} {y1}
Point 40 {x1+Rad1*cosd(Th12)} {y1+Rad1*sind(Th12)}
Point 50 0.00 {y2 + Rad2}
$ Inner Wall (3 mm thick)

$ {Rad5 -= Width}
$ {Rad2 -= Width}
$ {Rad1 -= Width}
... Rad1, Rad2, and Rad5 are reduced by the wall thickness

Point 110 0.00 {y5 - Rad5}
Point 120 {x20 = x1+Rad1} {y5-sqrt(Rad5^2-x20^2)}
Point 130 {x20} {y1}
Point 140 {x1+Rad1*cosd(Th12)} {y1+Rad1*sind(Th12)}
Point 150 0.00 {y2 + Rad2}

The output obtained from processing the above input file by Aprepro is shown below.

Title

Example for Aprepro

$ Center Points

Point 1 63.1952 75.7774

Point 2 0 -35.5

Point 5 0 36.2966

$ Rad5 = 207

$ Rad2 = 203.2236

$ Rad1 = 75.2537088

$ Angle between Points 2 and 1: 60.40745947

Point 10 0.00 -170.7034

Point 20 138.4489088 -117.5893956

Point 30 138.4489088 75.7774

39

Point 40 100.3576382 141.214957

Point 50 0.00 167.7236

$ Inner Wall (3 mm thick)

$ 204

$ 200.2236

$ 72.2537088

Point 110 0.00 -167.7034

Point 120 135.4489088 -116.2471416

Point 130 135.4489088 75.7774

Point 140 98.87615226 138.6062794

Point 150 0.00 164.7236

9.2 Macro Examples

Aprepro can also be used as a simple macro definition program. For example, a mesh input file may
have many lines with the same number of intervals. If those lines are defined using a variable name
for the number of intervals, then preprocessing the file with Aprepro will set all of the intervals to the
same value, and simply changing one value will change them all. The following input file fragment
illustrates this

$ {intA = 11} {intB = int(intA / 2)} line 10 str 10 20 0 {intA}

line 20 str 20 30 0 {intB}
line 30 str 30 40 0 {intA}
line 40 str 40 10 0 {intB}

Which when processed looks like:

$ 11 5

line 10 str 10 20 0 11

line 20 str 20 30 0 5

line 30 str 30 40 0 11

line 40 str 40 10 0 5

9.3 Command Line Variable Assignment

This example illustrates the use of assigning variables on the command line. While generating a
complicated 2D or 3D mesh, it is often necessary to reposition the mesh using GREPOS. If the
following file called shift.grp is created:

Offset X {xshift} Y {yshift}
Exit

then, the mesh can be repositioned simply by typing:

Aprepro xshift=100.0 yshift=-200.0 shift.grp temp.grp

Grepos input.mesh output.mesh temp.grp

40

9.4 Loop Example

This example illustrates the use of the loop construct to print a table of sines and cosines from 0 to
90 degrees in 5 degree increments.

Note the use of the double braces at the end of the first line to suppress the output of the initialization
of the angle variable.

Input:

$ Test looping - print sin, cos from 0 to 90 by 5

{Loop(19, angle, 0, 5)}
{angle} {sind(angle)} {cosd(angle)}
{EndLoop}

Output:

$ Test looping - print sin, cos from 0 to 90 by 5

0 0 1

5 0.08715574275 0.9961946981

10 0.1736481777 0.984807753

15 0.2588190451 0.9659258263

20 0.3420201433 0.9396926208

25 0.4226182617 0.906307787

30 0.5 0.8660254038

35 0.5735764364 0.8191520443

40 0.6427876097 0.7660444431

45 0.7071067812 0.7071067812

50 0.7660444431 0.6427876097

55 0.8191520443 0.5735764364

60 0.8660254038 0.5

65 0.906307787 0.4226182617

70 0.9396926208 0.3420201433

75 0.9659258263 0.2588190451

80 0.984807753 0.1736481777

85 0.9961946981 0.08715574275

90 1 6.123233765e-17

9.5 If Example

This example illustrates the if conditional construct.

{diff = sqrt(3)*sqrt(3) - 3}
$ Test if - else lines

{if(sqrt(3)*sqrt(3) - 3 == diff)}
complex if works

{else}
complex if does not work

{endif}

{if (sqrt(4) == 2)}
{if (sqrt(9) == 3)}
{if (sqrt(16) == 4)}
square roots work

41

{else}
sqrt(16) does not work

{endif}
{else}
sqrt(9) does not work

{endif}
{else}
sqrt(4) does not work

{endif}

{v1 = 1} {v2 = 2}
{if (v1 == v2)}
Bad if

{if (v1 != v2)}
should not see (1)

{else}
should not see (2)

{endif}
should not see (3)

{else}
{if (v1 != v2)}
good nested if

{else}
bad nested if

{endif}
good

make sure it is still good

{endif}

The output of this is:

-4.440892099e-16

$ Test if - else lines

complex if works

square roots work

1 2

good nested if

good

make sure it is still good

9.6 Aprepro Exodus Example

The input below illustrates the use of the exodus meta and exodus info functions.

{exodus meta("exodus.g")}

Title = {ex title}
Dimension = {ex dimension}

Node Count = {ex node count}
Element Count = {ex element count}

Element Block Info:

42

Count = {ex block count}
Names = {ex block names}

Topology = {ex block topology}
Ids = {print array(transpose(ex block ids))}

{print array(ex block info)}

Nodeset Info:

Count = {ex nodeset count}
Names = {ex nodeset names}
Ids = {print array(transpose(ex nodeset ids))}

{print array(ex nodeset info)}

Sideset Info:

Count = {ex sideset count}
Names = {ex sideset names}
Ids = {print array(transpose(ex sideset ids))}

{print array(ex sideset info)}

Timestep Info:

Count = {ex timestep count}
Times = {print array(transpose(ex timestep times))}

NOTE: Array index are 0-based by default; get word is 1-based... {i =0}
{loop(ex block count)}
Element block {ex block ids[i]} named ’{get word(++i ,ex block names,",")}’ has topology ’{get word(i ,ex block topology,",")}’
{endloop}

Extract Information Records using begin ... end

{info1 = exodus info("exodus.g", "start extract", "end extract")}
Rescan String:

{rescan(info1)}

Extract Information Records using prefix and then rescan:

{info2 = exodus info("exodus.g", "PRE: ")}
{rescan(info2)}

When processed by Aprepro, the following output will be produced:

Title = GeneratedMesh: 2x3x4+shell:xYz+nodeset:XyZ+sideset:xyzXYZ+times:7+variables:glob

Dimension = 3

Node Count = 60

Element Count = 50

Element Block Info:

Count = 4

Names = inner core,Shell-MinX,Shell-MaxY,Shell-MinZ

Topology = hex8,shell4,shell4,shell4

Ids = 1 2 3 4

1 24 8 0

2 12 4 1

3 8 4 1

4 6 4 1

Nodeset Info:

Count = 3

Names = nodelist 1,nodelist 2,nodelist 3

43

Ids = 1 2 3

1 20 20

2 15 15

3 12 12

Sideset Info:

Count = 6

Names = surface 1,surface 2,surface 3,surface 4,surface 5,surface 6

Ids = 1 2 3 4 5 6

1 12 48

2 8 32

3 6 24

4 12 48

5 8 32

6 6 24

Timestep Info:

Count = 7

Times = 0 1 2 3 4 5 6

NOTE: Array index are 0-based by default; get word is 1-based... 0

Element block 1 named ’inner core’ has topology ’hex8’

Element block 2 named ’Shell-MinX’ has topology ’shell4’

Element block 3 named ’Shell-MaxY’ has topology ’shell4’

Element block 4 named ’Shell-MinZ’ has topology ’shell4’

Extract Information Records using begin ... end

...(The next three lines are the "raw" info records)

loop(6)

a ++^2

endloop

Rescan String:

...(This shows the "rescanned" info records)

0

1

4

9

16

25

Extract Information Records using prefix and then rescan:

...(The next seven lines are the "raw" info records)

Units("si")

1 foot = 1~foot lout

12 inch = 12~inch lout

1728 in^3 = 1728~in^3 Vout

10~foot * 14~in

60 mph = 60~mph vout

88 fps = 88~fps vout

... (this is the output from the "rescanned" info records)

1 foot = 0.3048 meter

12 inch = 0.3048 meter

1728 in^3 = 0.02831684659 meter^3

44

1.0838688

60 mph = 26.8224 meter/sec

88 fps = 26.8224 meter/sec

9.7 Aprepro Test File Example

The input below is from one of the aprepro test files. It illustrates looping, assignments, trigonometric
functions, ifdefs, string processing, and many other Aprepro constructs.

$ Test program for Aprepro

$

Test number representations

{1} {10e-1} {10.e-1} {.1e+1} {.1e1}
{1} {10E-1} {10.E-1} {.1E+1} {.1E1}

Test assign statements:

{ a = 5} {b= a} $ Should print 5 5

{ a +=b} { a} $ Should print 10 10

{ a -=b} { a} $ Should print 5 5

{ a *=b} { a} $ Should print 25 25

{ a /=b} { a} $ Should print 5 5

{ a ^=b} { a} $ Should print 3125 3125

{ a = b} { a**=b} { a} $ Should print 5 3125 3125

Test trigonometric functions (radians)

{pi = d2r(180)} {atan2(0,-1)} {4*atan(1.0)} $ Three values of pi

{ a = sin(pi/4)} {pi-4*asin(a)} $ sin(pi/4)

{ b = cos(pi/4)} {pi-4*acos(b)} $ cos(pi/4)

{ c = tan(pi/4)} {pi-4*atan(c)} $ tan(pi/4)

Test trigonometric functions (degrees)

{r2d(pi)} {pid = atan2d(0,-1)} {4 * atand(1.0)}
{ad = sind(180/4)} {180-4*asind(ad)} $ sin(180/4)

{bd = cosd(180/4)} {180-4*acosd(bd)} $ cos(180/4)

{cd = tand(180/4)} {180-4*atand(cd)} $ tan(180/4)

Test max, min, sign, dim, abs

{pmin = min(0.5, 1.0)} {nmin = min(-0.5, -1.0)} $ Should be 0.5, -1

{pmax = max(0.5, 1.0)} {nmax = max(-0.5, -1.0)} $ Should be 1.0, -0.5

{zero = 0} {sign(0.5, zero) + sign(0.5, -zero)} $ Should be 0 1

{nonzero = 1} {sign(0.5, nonzero) + sign(0.5, -nonzero)} $ Should be 1 0

{dim(5.5, 4.5)} {dim(4.5, 5.5)} $ Should be 1 0

$ Test ifdef lines

{ifyes = 1} {ifno = 0}
{Ifdef(ifyes)}
This line should be echoed. (a)

{Endif}
This line should be echoed. (b)

{Ifdef(ifno)}
This line should not be echoed

{Endif}
This line should be echoed. (c)

{Ifdef(ifundefined)}

45

This line should not be echoed

{Endif}
This line should be echoed. (d)

$ Test if - else lines

{Ifdef(ifyes)}
This line should be echoed. (1)

{Else}
This line should not be echoed (2)

{Endif}
{Ifdef(ifno)}
This line should not be echoed. (3)

{Else}
This line should be echoed (4)

{Endif}

$ Test if - else lines

{Ifndef(ifyes)}
This line should not be echoed. (5)

{Else}
This line should be echoed (6)

{Endif}
{Ifndef(ifno)}

This line should be echoed. (7)

{Else}
This line should not be echoed (8)

{Endif}
$ Lines a, b, c, d, 1, 4, 6, 7 should be echoed

$ Check line counting -- should be on line 74: {Parse Error}
{ifdef(ifyes)} {This should be an error}
{endif}

$ Test int and [] (shortcut for int)

{int(5.01)} {int(-5.01)}
{[5.01]} {[-5.01]}

$ Test looping - print sin, cos from 0 to 90 by 5

{Loop(19, angle, 0, 5)}
{ angle} { sa=sind(angle)} { ca=cosd(angle)} {hypot(sa, ca)}
{EndLoop}

$$$$ Test formatting and string concatenation {{ SAVE = FORMAT}}
{loop(20, i, 1)}
{IO(i)} Using the format { FORMAT = "%." // tostring(i) // "g"},PI = {PI}
{endloop}
Reset format to default: { FORMAT = SAVE}

$$$$ Test string rescanning and executing

{ECHO(OFF)}
{Test = ’This is line 1: {a = atan2(0,-1)}

This is line 2: {sin(a/4)}
This is line 3: {cos(a/4)}’}
{Test2 = ’This has an embedded string: {T = "This is a string"}’}
{ECHO(ON)}
Original String:

46

{Test}
Rescanned String:

{rescan(Test)}
Original String:

{Test2}
Print Value of variable T = {T}
Rescanned String:

{rescan(Test2)}
Print Value of variable T = {T}

Original String: {t1 = "atan2(0,-1)"}
Executed String: {execute(t1)}

string = { string = " one two, three"}
delimiter "{ delm = " ,"}"
word count = {word count(string, delm)}
second word = "{get word(2, string, delm)}"

string = { string = " (one two, three * four - five"}
delimiter "{ delm = " ,(*-"}"
word count = {word count(string, delm)}
second word = "{get word(2, string, delm)}"

string = { string = " one two, three"}
delimiter "{ delm = " ,"}"
word count = { iwords = word count(string, delm)}

{loop(iwords, n, 1)}
word { n} = "{get word(n, string, delm)}"

{endloop}

$ Check parsing of escaped braces...

\{ int a = b + {PI/2} \}
\{ \}

When processec by Aprepro, there will be four warning messages and two error messages:

Aprepro: ERROR: syntax error, unexpected UNDVAR (test.inp_app, line 78)

Aprepro: WARNING: Undefined variable ’This’ (test.inp_app, line 79)

Aprepro: ERROR: syntax error, unexpected UNDVAR (test.inp_app, line 79)

Aprepro: WARNING: User-defined Variable ’a’ redefined (_string_, line 0)

Aprepro: WARNING: Undefined variable ’T’ (test.inp_app, line 203)

Aprepro: WARNING: Undefined variable ’new_var’ (test.inp_app, line 238)

The processed output from this example is:

$ Aprepro (Revision: 2.28) Mon Jan 21 10:58:23 2013

$ Test program for Aprepro

$

Test number representations

1 1 1 1 1

1 1 1 1 1

Test assign statements:

5 5 $ Should print 5 5

47

10 10 $ Should print 10 10

5 5 $ Should print 5 5

25 25 $ Should print 25 25

5 5 $ Should print 5 5

3125 3125 $ Should print 3125 3125

5 3125 3125 $ Should print 5 3125 3125

Test trigonometric functions (radians)

3.141592654 3.141592654 3.141592654 $ Three values of pi

0.7071067812 4.440892099e-16 $ sin(pi/4)

0.7071067812 0 $ cos(pi/4)

1 0 $ tan(pi/4)

Test trigonometric functions (degrees)

180 180 180

0.7071067812 2.842170943e-14 $ sin(180/4)

0.7071067812 0 $ cos(180/4)

1 0 $ tan(180/4)

Test max, min, sign, dim, abs

0.5 -1 $ Should be 0.5, -1

1 -0.5 $ Should be 1.0, -0.5

0 1 $ Should be 0 1

1 0 $ Should be 1 0

1 0 $ Should be 1 0

$ Test ifdef lines

1 0

This line should be echoed. (a)

This line should be echoed. (b)

This line should be echoed. (c)

This line should be echoed. (d)

$ Test if - else lines

This line should be echoed. (1)

This line should be echoed (4)

$ Test if - else lines

This line should be echoed (6)

This line should be echoed. (7)

$ Lines a, b, c, d, 1, 4, 6, 7 should be echoed

$ Check line counting -- should be on line 74:

$ Test int and [] (shortcut for int)

5 -5

5 -5

$ Test looping - print sin, cos from 0 to 90 by 5

0 0 1 1

5 0.08715574275 0.9961946981 1

10 0.1736481777 0.984807753 1

15 0.2588190451 0.9659258263 1

20 0.3420201433 0.9396926208 1

25 0.4226182617 0.906307787 1

30 0.5 0.8660254038 1

48

35 0.5735764364 0.8191520443 1

40 0.6427876097 0.7660444431 1

45 0.7071067812 0.7071067812 1

50 0.7660444431 0.6427876097 1

55 0.8191520443 0.5735764364 1

60 0.8660254038 0.5 1

65 0.906307787 0.4226182617 1

70 0.9396926208 0.3420201433 1

75 0.9659258263 0.2588190451 1

80 0.984807753 0.1736481777 1

85 0.9961946981 0.08715574275 1

90 1 6.123233996e-17 1

$$$$ Test formatting and string concatenation

1 Using the format %.1g,PI = 3

2 Using the format %.2g,PI = 3.1

3 Using the format %.3g,PI = 3.14

4 Using the format %.4g,PI = 3.142

5 Using the format %.5g,PI = 3.1416

6 Using the format %.6g,PI = 3.14159

7 Using the format %.7g,PI = 3.141593

8 Using the format %.8g,PI = 3.1415927

9 Using the format %.9g,PI = 3.14159265

10 Using the format %.10g,PI = 3.141592654

11 Using the format %.11g,PI = 3.1415926536

12 Using the format %.12g,PI = 3.14159265359

13 Using the format %.13g,PI = 3.14159265359

14 Using the format %.14g,PI = 3.1415926535898

15 Using the format %.15g,PI = 3.14159265358979

16 Using the format %.16g,PI = 3.141592653589793

17 Using the format %.17g,PI = 3.1415926535897931

18 Using the format %.18g,PI = 3.14159265358979312

19 Using the format %.19g,PI = 3.141592653589793116

20 Using the format %.20g,PI = 3.141592653589793116

Reset format to default: %.10g

$$$$ Test string rescanning and executing

Original String:

This is line 1: a = atan2(0,-1)

This is line 2: sin(a/4)

This is line 3: cos(a/4)

Rescanned String:

This is line 1: 3.141592654

This is line 2: 0.7071067812

This is line 3: 0.7071067812

Original String:

This has an embedded string: T = "This is a string"

Print Value of variable T = 0

Rescanned String:

This has an embedded string: This is a string

Print Value of variable T = This is a string

Original String: atan2(0,-1)

Executed String: 3.141592654

49

string = one two, three

delimiter " ,"

word count = 3

second word = "two"

string = (one two, three * four - five

delimiter " ,(*-"

word count = 5

second word = "two"

string = one two, three

delimiter " ,"

word count = 3

word 1 = "one"

word 2 = "two"

word 3 = "three"

$ Check parsing of escaped braces...

{ int a = b + 1.570796327 }
{ }

50

10 Aprepro Library Interface

The previous chapters have described the standalone version of Aprepro. The functionality pro-
vided in the standalone version can also be provided to other programs through the Aprepro library
C++ interface. The Aprepro library provides a SEAMS::Aprepro class which has three methods
for parsing the input:

1. Read from stdin, echo data to stdout. At end of input, the parsed output is available in the
Aprepro::parsing results() stream.

2. Read and parse a file. The entire file will be parsed with no output. After the file is parsed,
the parsed output is available in the Aprepro::parsing results() stream.

3. Read and parse a string containing the Aprepro input. The results from parsing the string
are returned in the Aprepro::parsing results() stream. Note that when using this method,
you cannot use loops, if blocks, verbatim, and echo.

10.1 Adding basic Aprepro parsing to your application

The Aprepro capability is provided as a set of C++ classes. The main SEAMS::Aprepro class
defined in the aprepro.h include file is the main interface used by external programs.

The basic method for using the SEAMS::Aprepro class is:

• create a SEAMS::Aprepro object

• parse the data

• retrieve the parsed data.

An example of this is shown below:

1 #include <aprepro . h>
2 int main (int argc , char ∗argv [])
3 {
4 SEAMS: : Aprepro aprepro ;
5 bool r e s u l t = aprepro . parse s t ream (i n f i l e , argv [argc −1]) ;
6 i f (r e s u l t) {
7 std : : cout << ”PARSING RESULTS: ” << aprepro . p a r s i n g r e s u l t s () . s t r () ;
8 }
9 }

10.2 Additional Aprepro parsing capabilities

In addition to the basic parsing shown above, additional capabilities are available including pre-
defining variables, adding additional functions, and modifying the aprepro options.

51

10.2.1 Adding new variables

The add variable() member function is used to define new variables that will be available during
the aprepro parsing. The function signatures are:

void add variable(const std::string &name, const std::string &value, bool is immutable=false);

void add variable(const std::string &name, double value, bool is immutable=false);

Where name is the name of the variable to be defined, value is the value of the variable (either a
double or a string). To create the variable as immutable, pass true as the third option.

10.2.2 Adding new functions

Additional functions can be made available during parsing as shown in the example below.

// This function is used below in the example showing how an

// application can add its own functions to an aprepro instance.

double succ(double i) {
return ++i;

}
// EXAMPLE: Add a function to aprepro...

SEAMS::symrec *ptr = aprepro.putsym("succ", SEAMS::Aprepro::FUNCTION, 0);

ptr->value.fnctptr d = succ;

ptr->info = "Return the successor to d";

ptr->syntax = "succ(d)";

Following this, the user can use the succ(d) command in the same way as any of the other Aprepro
functions. This can be used to provide functions that access data internal to your program. The
function will also appear in the DUMP FUNC() function list.

10.2.3 Modifying Aprepro Execution Settings

The standalone Aprepro can be executed with several command line options which change the
behavior of Aprepro as defined in Chapter 2. Similar behavior modifications are available in the
Aprepro library via the set option() command. The syntax is:

void set option(const std::string &option);

Where option is one of:

--debug Dump all variables, debug loops/if/endif
--dumpvars Dump all variables at end of run
--dumpvars json Dump all variables at end of run in json format
--version Print version number to stderr.
--immutable All variables are immutable – cannot be modified
--errors fatal Exit program with nonzero status if errors are encountered
--errors and warnings fatal Exit program with nonzero status if warnings are encountered
--require defined Treat undefined variable warnings as fatal
--one based index Array indexing is one-based (default = zero-based)
--interactive Interactive use, no buffering
--message Print INFO messages
--info=file Output INFO messages (e.g. DUMP() output) to file.

52

--nowarning Do not print warning messages.
--copyright Print copyright message to stderr.
--message Print INFO messages.
--trace Trace program execution. Primarily for aprepro developer.
--interactive Interactive use; do not buffer output.
--exit on End with Exit or EXIT or exit or Quit or QUIT or quit encountered in parsing

stream.
--include=file or path If a path is specified, then optionally prepend it to all included filenames; if a file

is specified, the process the contents of the file before processing input files.
--help Output the following text:

APREPRO PREPROCESSOR OPTIONS:

--debug or -d: Dump all variables, debug loops/if/endif and keep temporary files

--dumpvars or -D: Dump all variables at end of run

--dumpvars_json or -J: Dump all variables at end of run in json format

--version or -v: Print version number to stderr

--immutable or -X: All variables are immutable--cannot be modified

--errors fatal or -f: Exit program with nonzero status if errors are encountered

--errors and warnings_fatal or -F: Exit program with nonzero status if warnings are encountered

--require defined or -R: Treat undefined variable warnings as fatal

--one based index or -1: Array indexing is one-based (default = zero-based)

--interactive or -i: Interactive use, no buffering

--include=P or -I=P: Include file or include path

: If P is path, then optionally prepended to all include filenames

: If P is file, then processed before processing input file

: variables defined in P will be immutable.

--exit on or -e: End when ’Exit|EXIT|exit’ entered

--help or -h: Print this list

--message or -M: Print INFO messages

--info=file: Output INFO messages (e.g. DUMP() output) to file.

--nowarning or -W: Do not print WARN messages

--comment=char or -c=char: Change comment character to ’char’

--copyright or -C: Print copyright message

--keep history or -k: Keep a history of aprepro substitutions.

(not for general interactive use)

--quiet or -q: Do not print the header output line

var=val: Assign value ’val’ to variable ’var’

Use var=s̈val¨ for a string variable

Units Systems: si, cgs, cgs-ev, shock, swap, ft-lbf-s, ft-lbm-s, in-lbf-s

Enter DUMP() for list of user-defined variables

Enter DUMP_FUNC() for list of functions recognized by aprepro

Enter DUMP_PREVAR() for list of predefined variables in aprepro

->->-> Send email to gdsjaar@sandia.gov for aprepro support.

For additional functions that are rarely used, see the aprepro.h include file.

10.3 Aprepro Library Test/Example Program

A test program is provided with the Aprepro library which provides examples of the three parsing
methods, defining variables, and defining functions. This is defined in the apr test.cc file in the
Aprepro library distribution. The contents of this file are shown below:

53

1 #include <f stream>
2 #include <iostream>
3

4 #include ” apr symrec . h”
5 #include ” aprepro . h”
6

7 // This f unc t i on i s used be low in the example showing how an
8 // app l i c a t i o n can add i t s own func t i on s to an aprepro in s tance .
9 double succ (double i) { return ++i ; }

10

11 int main (int argc , char ∗argv [])
12 {
13 bool r e a d f i l e = fa l se ;
14

15 std : : s t r i n g o u t p u t f i l e ;
16

17 SEAMS: : Aprepro aprepro ;
18

19 // EXAMPLE: Add a func t i on to aprepro . . .
20 SEAMS: : symrec ∗ ptr = aprepro . putsym (” succ ” , SEAMS : : Aprepro : : SYMBOL TYPE: : FUNCTION, fa l se) ;
21 ptr−>value . f n c t p t r d = succ ;
22 ptr−>i n f o = ”Return the s u c c e s s o r to d” ;
23 ptr−>syntax = ” succ (d) ” ;
24

25 // EXAMPLE: Add a coup le v a r i a b l e s . . .
26 aprepro . add var i ab l e (”Greg” , ” I s the author o f t h i s code ” , true) ; // Make i t immutable
27 aprepro . add var i ab l e (” BirthYear ” , 1958) ;
28

29 for (int a i = 1 ; a i < argc ; ++a i) {
30 std : : s t r i n g arg = argv [a i] ;
31 i f (arg == ”−o”) {
32 o u t p u t f i l e = argv[++a i] ;
33 }
34 else i f (arg == ”− i ”) {
35 // Read from cin and echo each l i n e to cout A l l r e s u l t s w i l l
36 // a l s o be s t o r ed in Aprepro : : p a r s i n g r e s u l t s () stream i f needed
37 // at end o f f i l e .
38 aprepro . ap opt ions . i n t e r a c t i v e = true ;
39 bool r e s u l t = aprepro . parse s t ream (std : : c in , ” standard input ”) ;
40 i f (r e s u l t) {
41 i f (! o u t p u t f i l e . empty ()) {
42 std : : o f s tream o f i l e (o u t p u t f i l e) ;
43 o f i l e << aprepro . p a r s i n g r e s u l t s () . s t r () ;
44 }
45 else {
46 std : : cout << aprepro . p a r s i n g r e s u l t s () . s t r () ;
47 }
48 }
49 }
50 else i f (arg [0] == ’− ’) {
51 aprepro . s e t o p t i o n (argv [a i]) ;
52 }
53 else {
54 // Read and parse a f i l e . The en t i r e f i l e w i l l be parsed and
55 // then the output can be ob ta ined in an s t d : : o s t r ing s t r eam v ia

54

56 // Aprepro : : p a r s i n g r e s u l t s ()
57 std : : f s t ream i n f i l e (argv [a i]) ;
58 i f (! i n f i l e . good ()) {
59 i f (! aprepro . ap opt ions . i n c lude path . empty () && argv [a i] [0] != ’ / ’) {
60 std : : s t r i n g f i l ename = aprepro . ap opt ions . i n c lude path + ”/” + argv [a i] ;
61 i n f i l e . open (f i l ename , std : : f s t ream : : in) ;
62 }
63 }
64 i f (! i n f i l e . good ()) {
65 std : : c e r r << ”APREPRO: Could not open f i l e : ” << argv [a i] << ’ \n ’ ;
66 return 0 ;
67 }
68

69 bool r e s u l t = aprepro . parse s t ream (i n f i l e , argv [a i]) ;
70 i f (r e s u l t) {
71 i f (! o u t p u t f i l e . empty ()) {
72 std : : o f s tream o f i l e (o u t p u t f i l e) ;
73 o f i l e << aprepro . p a r s i n g r e s u l t s () . s t r () ;
74 }
75 else {
76 std : : cout << aprepro . p a r s i n g r e s u l t s () . s t r () ;
77 }
78 }
79

80 r e a d f i l e = true ;
81 }
82 }
83 i f (r e a d f i l e) {
84 std : : c e r r << ”Aprepro : There were ” << aprepro . g e t e r r o r c o u n t ()
85 << ” e r r o r s de tec ted during par s ing .\n” ;
86 return aprepro . g e t e r r o r c o u n t () == 0 ? EXIT SUCCESS : EXIT FAILURE ;
87 }
88

89 // Read and parse a s t r i n g ’ s worth o f data at a time .
90 // Cannot use l oop ing / i f s / . . . wi th t h i s method .
91 std : : s t r i n g l i n e , tmp ;
92 while (std : : cout << ”\ nexpre s s i on : ” && std : : g e t l i n e (std : : c in , tmp) && ! tmp . empty ()) {
93

94 l i n e += tmp ;
95

96 i f (∗tmp . rbeg in () == ’ \\ ’) {
97 l i n e . e r a s e (l i n e . l ength () − 1) ;
98 continue ;
99 }

100

101 l i n e += ”\n” ;
102

103 bool r e s u l t = aprepro . p a r s e s t r i n g i n t e r a c t i v e (l i n e) ;
104

105 i f (r e s u l t) {
106 std : : s t r i n g r e s s t r = aprepro . p a r s i n g r e s u l t s () . s t r () ;
107 std : : cout << ” : ” << r e s s t r ;
108

109 // Example showing how to ge t the s u b s t i t u t i o n h i s t o r y f o r the curren t l i n e .
110 i f (aprepro . ap opt ions . k e e p h i s t o r y) {

55

111 std : : vector<SEAMS: : h i s t o ry data> h i s t = aprepro . g e t h i s t o r y () ;
112 for (const auto &c u r r h i s t o r y : h i s t) {
113

114 std : : cout << c u r r h i s t o r y . o r i g i n a l << ” was s u b s t i t u t e d with ”
115 << c u r r h i s t o r y . s u b s t i t u t i o n << ” at index ” << c u r r h i s t o r y . index << ’ \n ’ ;
116 }
117

118 aprepro . c l e a r h i s t o r y () ;
119 }
120 }
121

122 aprepro . c l e a r r e s u l t s () ;
123

124 l i n e . c l e a r () ;
125 }
126 std : : c e r r << ”Aprepro : There were ” << aprepro . g e t e r r o r c o u n t ()
127 << ” e r r o r s de tec ted during par s ing .\n” ;
128 return aprepro . g e t e r r o r c o u n t () == 0 ? EXIT SUCCESS : EXIT FAILURE ;
129 }

56

Bibliography

[1] Gregory D. Sjaardema, “Overview of the Sandia National Laboratories Engineering Analysis
Code Access System,” SAND92-2292, Sandia National Laboratories, Albuquerque, NM, January
1993, Reprinted August 1994.

[2] Larry A. Schoof and Victor R. Yarberry, “EXODUSII: A Finite Element Data Model,” SAND92-
2137, Sandia National Laboratories, Albuquerque, NM, September, 1994.1

[3] F. W. Walker, J. R. Parrington, and F. Feiner, “Nuclides and Isotopes, 14th Edition,” General
Electric Corporation, San Jose, California, 1989.

[4] J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock Mechanics, Third Edition, Chapman
and Hall Publishers, London, 1979.

[5] T. W. Lambe and R. V. Whitman, Soil Mechanics, John Wiley & Sons, New York, New York,
1969.

[6] G. R. Simpson, “Units Computer Program”, copyright 1987.

1This document is very out of date. A new document is being prepared and a draft of the current state is available
at http://sandialabs.github.io/seacas/exodusII-new.pdf.

57

http://sandialabs.github.io/seacas/exodusII-new.pdf

	Cover
	Title
	Introduction
	Execution
	Aprepro Execution and Program Options
	Interactive Input

	Syntax
	Operators
	Arithmetic Operators
	Assignment Operators
	Relational Operators
	Boolean Operators
	String Operators

	Predefined Variables
	Functions
	Mathematical Functions
	Additional Functions
	[var] or [expression]
	File Inclusion
	Conditionals
	Switch Statements
	Loops
	ECHO
	Suppress individual expression output
	VERBATIM
	IMMUTABLE
	Output File Specification
	Exodus Metadata Extraction
	Exodus Info Records Extraction

	Units Conversion System
	Introduction
	Defined Units Variables
	Physical Constants
	Usage
	Additional Comments

	Error, Warning, and Informational Messages
	Error Messages
	Warning Messages
	Informational Messages

	Examples
	Mesh Generation Input File
	Macro Examples
	Command Line Variable Assignment
	Loop Example
	If Example
	Aprepro Exodus Example
	Aprepro Test File Example

	Aprepro Library Interface
	Adding basic Aprepro parsing to your application
	Additional Aprepro parsing capabilities
	Adding new variables
	Adding new functions
	Modifying Aprepro Execution Settings

	Aprepro Library Test/Example Program

	Bibliography

