Draft Date: December 4, 2018

Algebra —

A Program That Algebraically
Manipulates the Output of a
Finite Element Analysis
(Exodus Version)

Amy P. Gilkey (original)
Gregory D. Sjaardema (reprint)
Applied Mechanics Division IlI
Sandia National Laboratories
Albuquerque, NM 87185-0380

Abstract

The Algebra program allows the user to manipulate data from a finite element
analysis before it is plotted. The finite element output data is in the form
of variable values (e.g., stress, strain, and velocity components) in an Exodus
database. The Algebra program evaluates user-supplied functions of the data
and writes the results to an output Exodus database which can be read by plot
programs.

ACKNOWLEDGEMENTS

The original version of Algebra was written by Mary R. Sagartz and Johnny H.
Biffle [1].

The version of Algebra described in [2] manipulates a SEACO database [3].

Contents

1 Introduction

1.1

Changes since original printing

2 Equation Input

2.1
2.2
2.3
2.4
2.5
2.6

The Assigned Variable
Restricting the Nodes and/or Elements . .
Constants
Variables
Operators

Functions

3 Command Input

3.1
3.2
3.3
34
3.5
3.6

Database Editing Commands
Variable Selection Commands
Time Step Selection Commands
Mesh Limiting Commands

Element Block Selection Commands . . .

Information and Termination Commands

4 The Output Exodus Database

5 Informational and Error Messages

6 Executing ALGEBRA

6.1
6.2

Execution Files

Special Software

A Summary of Functions

10
10
11
11
12
13
13

16
17
18
20
23
25
26

28

29

31
31
31

33

B Command Summary

C Sample Session

35

38

Chapter 1

Introduction

The Algebra program allows the user to manipulate data from a finite element
program before it is plotted. The program reads the database output from
an analysis program, manipulates the data using algebraic expressions supplied
by the user, and writes the new data to a database to be processed by a plot
program such as BLOT [1].

The program’s algebraic evaluations allow special functions that are not pro-
vided by the analysis program (such as principal values, effective stress, and
pressure) to be available for plotting. The evaluations include all of the FORTRAN
arithmetic operations and most of the FORTRAN functions plus several special
functions.

Both the input and output databases are in the Exodus database format [0].
The Exodus format defines three types of variables:

e A global variable has a value representative of the system as a whole at
each time step (e.g., the total energy).

e A nodal variable has a value for every node of the mesh at each time step
in the analysis (e.g., the displacement in the x-direction).

e An element variable has a value for every element in the element block
in which the variable is defined at each time step (e.g., the stress in the
x-direction).

A time step includes the values for all the variables (global, nodal, and element).

Each element in the database is assigned to an “element block”. An element
block distinguishes a material or an element type (such as a truss or quadrilat-
eral). A specific element variable may be undefined for some element blocks,
meaning that the variable has no value for elements in that element block.

The algebraic expressions to be evaluated in Algebra depend on the values from
the input database. These input values include the time of the time step, the
nodal coordinates, and the global, nodal, and element variables calculated by

1There are acutally more variables than this permitted in an Exodus database, but only
the three below are currently supported by Algebra

the analysis program, including values at specific nodes or elements. The values
of variables from the previous database time step or the first database time step
may also be referenced in the algebraic expressions. Global, nodal, and element
variables are created by Algebra in the output database, with the variable type
determined by the types of variables in the expression being evaluated.

The Exodus database format includes the names of the coordinates and variables.
This allows the user to reference the input variables by name and to associate
a meaningful name with calculated data.

There are two or three (depending on the number of dimensions in the mesh)
special nodal variables which contain the displacement components at each node.
The BLOT plot program [4] expects these variables to follow certain order and
naming conventions. These variables must be the first nodal variables and they
must start with “D” and end with the last letter of the corresponding coordinate
name.

Algebra allows the user to restrict the information that is written to the output
database. The time steps to be written may be selected from those available on
the input database. The size of the output mesh may be limited by giving the
nodal coordinates of a section of the mesh or by selecting elements by element
block.

1.1 Changes since original printing

e Algebra will now add a timestep to an exodus file with no previous timesteps.
The equation defining the new variable(s) can access constants and coor-
dinates.

e Can remove elements by global id. The syntax is:
REMOVE ELEMENT id1 id2 ... idn
A maximum of 1024 ids may be specified. It is currently not very efficient,
but should work.

e Implemented filtering of elements which is the capabilty to remove ele-
ments based on the value of a specified element variable. The syntax
is:

FILTER ELEMENT variable lt|le|ge|ne| gt|ge value TIME db_time

— wvariable is the name of an element variable on the database.

value is the value that this variable will be compared against.

lt|le|ge|ne| gt ge is the type of comparison corresponding to: 1t — less
than, le == less than or equal, ...

— db_time is the time on the database where the variable will be read. If
db_time is less than the minimum database time, then the minimum
time will be used; if greater than the maximum database time, then
the maximum time will be used.

If the variable doesn’t exist on an element block, then all of the
elements in that element block will be retained.

e Added inverse zoom capability — delete all nodes and elements inside the
specified zoom box unless the element contains nodes that are outside the
zoom box. This is specified by adding OUTSIDE to the end of the ZOOM
command line.

e Removed all mention of history variables which have been removed from
Exodus a long time ago.

Chapter 2

Equation Input

The expressions to be evaluated are entered by the user as equations. The syntax
is very similar to FORTRAN equation syntax. The first item is the variable to

be assigned, followed by an “=", then the expression to be evaluated. The
expression consists of constants, variables, arithmetic operators, and functions.

The equations must adhere to the following syntax rules.

e Blanks are treated as delimiters, but are otherwise ignored.

e Either lowercase or uppercase letters are acceptable, but lowercase letters
are converted to uppercase.

e A “’7 character in any equation starts a comment. The “’” and any
characters following it on the line are ignored.

e An equation may be continued over several lines with a “>” character.
The “>” and any characters following it on the current line are ignored
and the next line is appended to the current line.

2.1 The Assigned Variable

The assigned variable name must start with a letter and can be up to eight
alphanumeric characters (A-Z, 0-9) long. A name that is longer than eight
characters is truncated with a warning. Blanks cannot be embedded in a variable
name.

All assigned variables (except temporary variables specified by a DELETE com-
mand) will be written to the output database. The input database variables
are not written to the output database unless they are assigned in an equation
(such as X = X) or transferred with a SAVE command.

The type of the assigned variable depends on the expression. There are three
types of “quantities” in an expression that are related to the variable types:

e Global quantities include global variables and nodal or element variables
for specific nodes or elements.

10

e Nodal quantities include nodal variables and nodal coordinates, unless the
value is limited to a specific node.

e Element quantities include element variables, unless the value is limited
to a specific element.

Global quantities are referred to as “single-value” quantities. Nodal and element
quantities are referred to as “arrays”.

Each part of an expression yields a result of a particular type. The types of
constants and variables are defined above. The type of an arithmetic operation
is dependent on the types of its operands. If both operands are global quanti-
ties, the operation yields a global quantity. If either operand is an array, the
operation type is the array type. Thus a nodal quantity and an element quan-
tity cannot appear in the same operation. For array operations, the operator
is applied to each array element. The type of a function is dependent on the
types of its parameters. The rules for operand types also apply to all function
parameters. One special type of function yields a global quantity regardless of
the parameter type.

The assigned variable can be reassigned, but it must be assigned to the same
variable type (global, nodal or element).

The equations are evaluated in order. The assigned variables are grouped by
variable type, but are otherwise output in the order they are first assigned by
the equations.

If there are no timesteps on the input database, a timestep will be added to the
output database. The equation defining new variable(s) can access constants
and coordinates.

2.2 Restricting the Nodes and/or Elements

Nodes and /or elements may be deleted from the input database with the ZOOM,
VISIBLE, FILTER, or REMOVE commands. An input variable is defined for all
input nodes and/or elements. An output variable is only defined for the nodes
and/or elements to be output.

Element variables may be undefined for certain element blocks. This may be
further restricted with the BLOCKS command. If two or more element variables
are combined with an operator or are function parameters, the resulting variable
is only defined for an element block if all the variables involved are defined for
that block.

When an operation or function is performed on an array variable, it is only
performed for the defined nodes/elements. This is done to prevent problems
with numerical errors such as divide by zero for undefined values.

2.3 Constants

Constants can be entered in any legal FORTRAN numeric format (e.g., 5, 5.4
or 5.4E3). All integers are converted to real numbers. If the constant is signed,

11

parenthesis should surround the sign and constant.

2.4 Variables

The variables that may be found in the expression to be evaluated are:

e any input database global, nodal or element variable,

e the values for any coordinate,

a reference to a specific nodal or element quantity,

the time associated with each time step, and

e any previously assigned variable.

If an embedded blank is included in an input database variable or coordinate
name, the blank must be deleted in references to the variable. For example,
variable “SIG X” must be entered as “SIGX”.

The coordinates may be referenced in the expression by name. They are treated
as an input database nodal variable whose value remains constant in all “whole”
time steps.

If the value for a specific node or element is desired, a “$” and the node or
element number is appended to the variable name. For example, SIGR$40 refers
to the value for the 40th element of variable SIGR. A specifier may be appended
to the name of any nodal or element quantity in an expression, including coor-
dinates and previously assigned variables. References to specific nodes and/or
elements can only be made if the variable is defined at that node and /or element.

The value of a variable in the previous time step is referenced by appending
a “” to the variable name. The value in the first time step is referenced by
appending a “:1” to the variable name. If time steps are selected, the previous
and first time steps refer to the selected time steps, not the input time steps.

The name “TIME” is reserved for the time associated with each time step.
The output database times are copied from the input database unless a value
is assigned to the variable TIME. TIME may also appear in the expression,
referring to the input or assigned database time.

The equations are evaluated in order. References to a variable name in the
expression refer to the last assigned value, or to the input variable if the name
has not been assigned. For example, if input global variable CONST has a value
of 4 and the following equations are executed,

X = CONST
CONST = 2xCONST
Y = CONST

the result is X equals 4, CONST equals 8, and Y equals 8.

12

2.5 Operators

The legal operations are addition (+), subtraction (—), multiplication (x), divi-
sion (/), and exponentiation (xx). The operands may be either single-value or
array quantities as explained in Section 2.1.

FORTRAN operator precedence rules apply (e.g., multiplication is performed
before addition). Parenthesis may be used to change the order of evaluation.

Two operators cannot be placed in succession. To precede a value with a sign,
enclose the sign and value in parenthesis. For example,

A = —5 x —SIN(0.5)
should be written as
A = (=5) * (—SIN(0.5))

where the parenthesis around the —5 are optional.

2.6 Functions

Many of the standard FORTRAN functions and several special functions are
implemented in Algebra. These functions are summarized in Appendix A. The
parameters for any function may be expressions and all parameters must be
supplied. The parameters may be either single-value or array quantities as
explained in Section 2.1.

A function in an equation is distinguished from a variable name by the “(” which
follows the function name. This allows the user to assign variable names which
are the same as the function names and to reference input database variables
with the same names as the functions.

FORTRAN Functions

The standard FORTRAN functions implemented are: AINT, ANINT, ABS,
MOD, SIGN, DIM, MAX, MIN, SQRT, EXP, LOG, LOG10, SIN, COS, TAN,
ASIN, ACOS, ATAN, ATAN2, SINH, COSH, and TANH. The use and result of
these functions is the same as in FORTRAN, and the same restrictions apply.

Tensor Principal Values and Magnitude Functions

Functions PMAX and PMIN calculate the maximum and minimum principal
values of a symmetric tensor. For example, to obtain the maximum principal
values for a tensor T,

SMAX = PMAX (Tllv TQQ, T33, T12, T23, Tgl).

For a two-dimensional tensor or a tensor using cylindrical coordinates for an
axisymmetric solution, PMAX2 and PMIN2 may be used:

SMAX = PMAX2 (T11, Tha, Ti2).

13

The function TMAG calculates the magnitude of the deviatoric part of a sym-
metric tensor. To calculate the magnitude of tensor 7T,

SMAG = TMAG (T11, Taa, Ts3, Th2, Ths, Th1)

where the following calculation is made:

SMAG = /(T11 — T2)? + (Toz — T33)% + (Ts3 — T11)% + 6 % (T + T + T3)-

To obtain the von Mises stress, the value supplied by function TMAG is mul-
tiplied by the constant 1/v/2. To calculate effective strain, multiply by the
constant v/2.0/3.0.

IF Functions

The functions IFLZ, IFEZ, and IFGZ provide a simple if-then-else capability.
Each function expects three parameters: a condition, a true result, and a false
result. Function IFLZ returns the true result if the condition evaluates to less
than zero; otherwise the function returns the false result. Function IFEZ checks
for equal to zero and IFGZ checks for greater than zero. For example, the
equation

X = IFLZ (COND, RTRUE, RFALSE)

with global parameters cond, rtrue, and rfalse could be implemented in FORTRAN
by

IF (COND .LT. 0.0) THEN
X = RTRUE
ELSE
X = RFALSE
END IF

All the parameters are evaluated before the function, so both the true result
and the false result are evaluated even though only one is needed.

Array = Global Variable Functions

The functions SUM, SMAX, and SMIN perform a calculation on a nodal or
element array parameter which produces a global result. SUM sums all the
array values. SMAX and SMIN return the maximum and minimum of all the
array values.

Values for specific nodes and/or elements are only included in the function
calculation if the variable is defined at that node and/or element.

Envelope Functions

An “envelope” function performs a calculation that is cumulative for all previous
time steps. The function ENVMAX results in an array (assuming the parameter
is an array) that is the maximum of each array value for all previous selected
time steps and the current time step. On the last time step, ENVMAX contains

14

the maximum of each array value for all selected time steps. ENVMIN is the
corresponding minimum function.

15

Chapter 3

Command Input

The user can issue a command whenever an equation is expected. The com-
mands are in free-format and must adhere to the following syntax rules.

e Valid delimiters are a comma or one or more blanks.

e Either lowercase or uppercase letters are acceptable, but lowercase letters
are converted to uppercase.

e A “$” character in any command line starts a comment. The “$” and any
characters following it on the line are ignored.

e A command may be continued over several lines with an “>” character.
The “>” and any characters following it on the current line are ignored
and the next line is appended to the current line.

Each command has an action keyword or “verb” followed by a variable number
of parameters.

The command verb is a character string. It may be abbreviated, as long as
enough characters are given to distinguish it from other commands.

The meaning and type of the parameters is dependent on the command verb.
Most command parameters are optional. If an optional parameter field is blank,
a command-dependent default value is supplied. Below is a description of the
valid entries for parameters.

e A numeric parameter may be a real number or an integer. A real number
may be in any legal FORTRAN numeric format (e.g., 1, 0.2, -1E-2). An
integer parameter may be in any legal integer format.

e A string parameter is a literal character string. Most string parameters
may be abbreviated.

The notation conventions used in the command descriptions are:

e The command verb is in bold type.

16

e A literal string is in all uppercase SANSERIF type and should be entered
as shown (or abbreviated).

e The value of a parameter is represented by the parameter name in italics.

e The default value of a parameter is in angle brackets (“< >"). The initial
value of a parameter set by a command is usually the default parameter
value. If not, the initial setting is given with the default or in the command
description.

The commands are summarized in Appendix B.

3.1 Database Editing Commands

TITLE

TITLE sets the title to be written to the output database. The title
is input on the next line. If no TITLE command is issued, the input
database title is written to the output database.

17

3.2 Variable Selection Commands

SAVE variable;, variables, ... or optiony, options, ... <no default>

SAVE transfers variables from the input database to the output database.
An individual variable may be transferred by listing its name as a pa-
rameter. For example,

SAVEY, Z
has the same effect as the equations (with the exception noted below):
Y=Y
Z=17
Assigned variables are affected by the BLOCKS command; SAVEd vari-
ables are not.

The following options transfer sets of variables:

SAVE GLOBAL
transfers all input database global variables.

SAVE NODAL
transfers all input database nodal variables.

SAVE ELEMENT
transfers all input database element variables.

SAVE ALL
transfers all input database global, nodal, and element variables.

The SAVE command causes the variables to be output in the same order
they would be if they were assigned by equations at that point.

If a SAVEd variable is also an assigned variable, the assigned value is
written to the output database, regardless of whether the SAVE is done
before or after the assignment.

18

DELETE variable,, variabley, ... <no default>

DELETE marks an assigned variable as a temporary variable that will
not be written to the output database. A variable must be assigned (or
SAVEd) before it is listed in a DELETE command.

19

3.3 Time Step Selection Commands

Algebra allows the user to restrict the time steps from the input database that
are written to the output database. By default, all the time steps from the
input database are written to the output database.

Time step selection is performed in one of the following modes:

e Interval-Times Mode selects time steps at uniform intervals between a
minimum and a maximum time. If this mode has a delta offset, the
first selected time is not the minimum time, but the minimum time plus
the interval. If this mode has a zero offset, the first selected time is the
minimum time.

e All-Available-Times Mode selects all time steps between a minimum and
a maximum time.

e User-Selected-Times Mode selects time steps which are explicitly specified
by the user.

The nearest time step from the database is chosen for each selected time.

The following are the time step selection parameters:
e tmin is the minimum selected time,
e tmaz is the maximum selected time,
e nintv is the number of selected time intervals, and

e delt is the selected time interval.

In the interval-times mode, up to nintv time steps at interval delt between tmin
and tmax are selected. The mode may have a delta offset or a zero offset. With
a delta offset, the first selected time is tmin+delt; with a zero offset, it is tmin.

In the interval-times mode with a delta offset, the number of selected time
intervals nintv and the selected time interval delt are related mathematically by
the equations:

delt = (tmax — tmin) /nintv (1)
nintv = INT ((tmin — tmaz)/delt) (2)

With a zero offset, nintv and delt are related mathematically by the equations:

delt = (tmax — tmin)/(nintv — 1) (1)
nintv = INT ((¢tmin — tmax)/delt) +1 (2)

The user specifies either nintv or delt. If nintv is specified, delt is calculated
using equation 1. If delt is specified, nintv is calculated using equation 2.

In the all-available-times mode, all database time steps between tmin and tmazx
are selected (parameters nintv and delt are ignored). In the user-selected-times
mode, the specified times are selected (all parameters are ignored).

TMIN tmin <minimum database time>

20

TMIN sets the minimum selected time tmin to the specified parameter
value. If the user-selected-times mode is in effect, the mode is changed
to the all-available-times mode.

In interval-times mode, if nintv is selected (by a NINTV or ZINTV com-
mand), delt is calculated. If delt is selected (by a DELTIME command),
nintv is calculated.

TMAX tmaz <maximum database time>

TMAX sets the maximum selected time tmax to the specified parameter
value. If the user-selected-times mode is in effect, the mode is changed
to the all-available-times mode.

In interval-times mode, if nintv is selected (by a NINTV or ZINTV com-
mand), delt is calculated. If delt is selected (by a DELTIME command),
nintv is calculated.

NINTV nintv <10 or the number of database time steps — 1, whichever is
smaller>

NINTV sets the number of selected time intervals nintv to the specified
parameter value and changes the mode to the interval-times mode with
a delta offset. The selected time interval delt is calculated.

ZINTYV nintv <10 or the number of database time steps, whichever is smaller>

ZINTV sets the number of selected time intervals nintv to the specified
parameter value and changes the mode to the interval-times mode with
a zero offset. The selected time interval delt is calculated.

DELTIME delt <(tmax — tmin)/(nintv — 1), where nintvis 10 or the number
of database time steps, whichever is smaller>

DELTIME sets the selected time interval delt to the specified parameter
value and changes the mode to the interval-times mode with a zero offset.
The number of selected time intervals nintv is calculated.

ALLTIMES
ALLTIMES changes the mode to the all-available-times mode.

21

TIMES [ADD,] #, ty, ... <no times selected>

TIMES changes the mode to the user-selected-times mode and selects
times t1, tp, etc. The closest time step from the database is selected for
each specified time.

Normally, a TIMES command selects only the listed time steps. If ADD
is the first parameter, the listed steps are added to the current selected
times. Any other time step selection command clears all TIMES selected
times.

Up to the maximum number of time steps in the database may be spec-
ified. Times are selected in the order encountered on the database, re-
gardless of the order the times are specified in the command. Duplicate
references to a time step are ignored.

STEPS [ADD,] n4, ng, ... <no steps selected>

The STEPS command is equivalent to the TIMES command except that
it selects time steps by the step number, not by the step time.

For example, if the times from the database are 0.0, 0.5, 1.0, 1.5, etc., the
commands

TMIN 0.0
TMAX 5.0
NINTV 5

select times 1.0, 2.0, 3.0, 4.0, and 5.0. If the NINTV command is replaced by
ZINTV 3
then times 0.0, 2.5, and 5.0 are selected. If the NINTV command is replaced by
DELTIME 2.0
then times 0.0, 2.0, 4.0 are selected.

Another example is given in Appendix C.

22

3.4 Mesh Limiting Commands

These commands limit the mesh that is written to the output database by
deleting nodes and elements that do not satisfy the limiting conditions. A
deleted node or element is entirely removed from the output database and is
ignored in all equation evaluations. Deleting nodes and elements may cause the
nodes and elements on the output database to be numbered differently than
those on the input database.

If both the ZOOM and VISIBLE commands are in effect, the nodes and elements
must satisfy both the limiting conditions to be written to the output database.

By default, the entire mesh is written to the output database.
ZOOM zmin, zmaz, ymin, ymaz, zmin, zmaz <no default>[OUTSIDE]

ZOOM sets the limits of the mesh to be written to the output database.
Limits zmin to xmaz apply to the first coordinate, ymin to ymaz to the
second coordinate, and zmin to zmaz to the third coordinate (if any). A
node is deleted if it is not within the rectangle (or brick) defined by these
limits. An element is deleted if all of its nodes are deleted.

If OUTSIDE is specified, then all nodes and elements inside the zoom
box will be deleted unless the element contains nodes that are outside
the zoom box.

VISIBLE [ADD or DELETE,) block_idy, block_idy, ... <all element blocks>

VISIBLE limits the element blocks to be written to the output database.
An element that is not in a “visible” element block is deleted. A node is
deleted if all the elements containing the node are deleted.

The block_id refers to the element block identifier (displayed by the LIST BLOCKS

command).

If there is no parameter, all element blocks are visible. If the first pa-
rameter is ADD or DELETE, the element blocks listed are added to or
deleted from the current visible set. Otherwise, only the element blocks
listed in the command are visible.

FILTER ELEMENT variable lt|le| ge|ne| gt|ge value TIME db_time

e variable is the name of an element variable on the database.
e value is the value that this variable will be compared against.

o [t|le|ge|ne|gt|ge is the type of comparison corresponding to: 1t — less
than, le == less than or equal, ...

e db_time is the time on the database where the variable will be
read. If db_time is less than the minimum database time, then the
minimum time will be used; if greater than the maximum database
time, then the maximum time will be used.

FILTER ELEMENT will delete all elements that satisfy the specified con-
dition. If the variable doesn’t exist on an element block, then all of the
elements in that element block will be retained.

23

REMOVE ELEMENT [GLOBAL or LOCAL] id; id, ... id,

REMOVE ELEMENT will remove the elements with the specified global
or local id(s). If neither GLOBAL or LOCAL is specified, it will default
to local ids. A maximum of 1024 ids may be specified.

24

3.5 Element Block Selection Commands

BLOCKS [ADD or DELETE,] block_id;, block_idy, ... <all element blocks>

BLOCKS selects the element blocks which have defined values for all
following equations. An element variable can be defined for an element
block only if that block is selected. This command can only mark element
variables as undefined, it cannot mark previously undefined variables as
defined. It has no effect on nodal variables.

The BLOCKS command affects all following equations unless another
BLOCKS command is entered. The BLOCKS command has no effect on
the output of SAVEd element variables.

The block_id refers to the element block identifier (displayed by the LIST BLOCKS
command).

If there is no parameter, all element blocks are selected. If the first
parameter is ADD or DELETE, the element blocks listed are added to or
deleted from the current selected set. Otherwise, only the element blocks
listed in the command are selected.

MATERIAL [ADD or DELETE,] block_idy, block_ids, ... <all element blocks>
MATERIAL is exactly equivalent to a BLOCKS command.

25

3.6 Information and Termination Commands

SHOW command <no parameter>

SHOW displays the settings of parameters relevant to the command. For
example, SHOW TMIN displays the time step selection criteria.

SHOW with no parameters displays any nondefault command parameters
and all input equations.

LIST option <no parameter>
LIST displays database information, depending on the option.

LIST VARS
displays a summary of the database. The summary SEACAS /includes
the database title; the number of nodes, elements, and element
blocks; the number of node sets and side sets; and the number of
variables.

LIST BLOCKS or MATERIAL
displays a summary of the element blocks. The summary SEA-
CAS/includes the block identifier, the number of elements in the
block, the number of nodes per element, and the number of at-
tributes per element.

LIST QA
displays the QA records and the information records.

LIST NAMES
displays the names of the global, nodal, and element variables.

LIST STEPS
displays the number of time steps and the minimum and maximum
time step times.

LIST TIMES
displays the step numbers and times for all time steps on the
database.

26

HELP option <no parameter>

HELP displays information about the Algebra program, depending on the
option.

HELP RULES
displays a summary of the equation syntax rules.

HELP COMMANDS
displays a summary of the commands.

HELP FUNCTIONS
lists the names of all available functions and displays some useful
equations, such as the equation for effective strain.

HELP
lists the available HELP options and displays any nondefault com-
mand parameters and all input equations.

LOG
LOG requests that the log file be saved when the program is exited. Each
correct equation and command that the user enters (excluding informa-
tional commands such as SHOW) is written to the log file.

END
END ends the equation input and begins the equation evaluation. The
word “EXIT” may be used in place of “END”.

QUIT

QUIT ends the equation input and exits the program immediately without
writing an output database.

27

Chapter 4

The Output Exodus Database

The Exodus database documentation can be accessed at http://gsjaardema.
github.io/seacas/exodusII-new.pdf. It contains a full detailed description
of Exodus. This section presents an overview of the concepts and structure of
an Exodus database. The first part of the Exodus database consists of the mesh
description which includes the nodal coordinates, the element block information
(including the element connectivity), the node sets, and the side sets. The
second part of the database contains the time step information, including all
the variable values for each time step.

If nodes and/or elements have been deleted from the database with a ZOOM,
FILTER, or VISIBLE command, the entire output database reflects the deletions
and any node or element renumbering caused by the deletions.

The output database mesh description is copied (with changes for deletions)
from the input database. The database title may be changed with the TITLE
command.

All QA records from the input database are copied to the output database,
and a record is added describing the current Algebra run. All input database
informational records are copied to the output database.

All names on the output database are in uppercase and have all embedded blanks
removed. The coordinate and element block names from the input database are
converted and copied (with changes for deletions) to the output database. The
output variable names are assigned in the equations.

The output database element variable truth table has an entry for each output
element variable which indicates whether the variable is defined for each ele-
ment block. This is determined by the input element variable truth table, the
equations, and the BLOCKS command.

The output time steps include the time step times and the output variables for
each time step. Each selected input time step is processed; non-selected time
steps are ignored. For each time step, all variables are evaluated and written to
the output database.

28

http://gsjaardema.github.io/seacas/exodusII-new.pdf
http://gsjaardema.github.io/seacas/exodusII-new.pdf

Chapter 5

Informational and Error
Messages

Algebra operates in three stages:

1. scan the input database for general information,
2. input commands and equations from the user,

3. re-read the input database and copies the mesh description to the output
database, and

4. evaluate the equations for each time step.

Algebra expects a valid database. If a format error is discovered before the time
steps, the program prints an error of the following format:

DATABASE ERROR - READING DATABASE ITEM

and aborts. This problem may occur either while scanning the input database
or while copying the mesh description to the output database.

If a format error is found while reading the time steps, the following error
message is printed:

WARNING - END-OF-FILE DURING TIME STEPS
or
DATABASE ERROR - READING DATABASE ITEM.

If this error is encountered while scanning the input database, the time step with
the error and all following time steps are ignored, but the program continues
and the previous time steps are available for processing. Some database errors
may not be detected until the equations are being evaluated. The program
aborts when the error is encountered, but the output database is correct for all
previous time steps.

An equation is checked for syntax errors as soon as the user enters the line. If an
error is found, a message is printed and the equation is ignored (with a message
to that effect). If only a warning is printed, the equation is accepted. If the
message is not sufficiently informative, the description of the equation syntax
(Chapter 2) may be helpful.

29

A command is performed as soon as it is entered. A command error usually
causes the command to be ignored. The command is usually performed if only a
warning is printed. The display after the command shows the effect of the com-
mand. If the message is not sufficiently informative, the appropriate command
description (Chapter 3) may be helpful.

The evaluation loop processes each time step by reading the needed input
database variables, evaluating the equations, and writing the results to the out-
put database. Any error during this stage causes the program to abort (with a
fatal error message). The output database is readable, but it contains only the
data from the time steps processed before the error.

A numerical error while evaluating the equations (such as divide by zero) causes
a fatal error. A message is printed describing the error and the equation that
caused the error is displayed after the error message.

The program allocates memory dynamically as it is needed. If the system runs
out of memory, the following message is printed:

FATAL ERROR - TOO MUCH DYNAMIC MEMORY REQUESTED

and the program aborts. The user should first try to obtain more memory on
the system. Another solution is to run the program in a less memory-intensive
fashion. For example, entering fewer equations may require less memory.

Algebra has certain programmer-defined limitations (for example, the number
of curves that may be defined. The limits are not specified in this manual since
they may change. In most cases the limits are chosen to be more than adequate.
If the user exceeds a limit, a message is printed. If the user feels the limit is
too restrictive, the code sponsor should be notified so the limit may be raised
in future releases of Algebra.

30

Chapter 6

Executing Algebra

6.1 Execution Files

Algebra is run as: algebra {input_file} {output_file}

6.2 Special Software

Algebra is written in ANST FORTRAN-77 [7] with the exception of the following
system-dependent features:

e the OPEN options for the files and

e the use of ASCII characters that are not in the FORTRAN standard char-
acter set.

Algebra uses the following software packages:

e the SUPES package [8] which SEACAS/includes dynamic memory alloca-
tion, a free-field reader, and FORTRAN extensions and

31

Bibliography

[1]

Mary R. Sagartz and Johnny H. Biffle, “ALGEBRA — A Computer Program
That Algebraically Manipulates Finite Element Output Data,” SANDS&0-
2061, Sandia National Laboratories, Albuquerque, NM, September 1980.

Amy P. Gilkey, “ALGEBRA — A Program That Algebraically Manipulates
the Output of a Finite Element Analysis,” SAND86-0881, Sandia National
Laboratories, Albuquerque, NM, May 1986.

Zelma E. Beisinger, “SEACO: Sandia Engineering Analysis Department
Code Output Data Base,” SAND®84-2004, Sandia National Laboratories,
Albuquerque, NM, in preparation.

Amy P. Gilkey, “BLOT — A Mesh and Curve Plot Program for the Output
of a Finite Element Analysis,” SAND®88-1432, Sandia National Laborato-
ries, Albuquerque, NM, in preparation.

Lee M. Taylor, Dennis P. Flanagan, and William C. Curran, “The GEN-
ESIS Finite Element Mesh File Format,” SAND86-0910, Sandia National
Laboratories, Albuquerque, NM, May 1986.

William C. Mills-Curran, Amy P. Gilkey, Dennis P. Flanagan, “EXODUS:
A Finite Element File Format for Pre- and Post-Processing,” SANDS&7-
2997, Sandia National Laboratories, Albuquerque, NM, in preparation.

American National Standard Programming Language FORTRAN, Ameri-
can National Standards Institute, ANSI X3.9-1978, New York, 1978.

John R. Red-Horse, William C. Curran, and Dennis P. Flanagan, “SU-
PES Version 2.1 — A Software Utility Package for the Engineering Sciences
;7 SAND90-0247, Sandia National Laboratories, Albuquerque, NM, May
1990.

32

Appendix A

Summary of Functions

Standard FORTRAN Functions
r = AINT (z) truncation: |z|
r = ANINT (z) nearest integer: [z + .Hxsign(x)]
r= ABS () absolute value: |z
r = MOD (z, y) remainder: x — y * [2/y]
r = SIGN (z, y) transfer of sign: |z| sign y
r = DIM (z, y) positive difference: x—min(z,y)
r=MAX (z, y, ...) | maximum of z, y, ...
r=MIN (z,y,...) | minimum of z, y, ...
r = SQRT (x) square root: /x
r = EXP (x) exponentiation: e”
r = LOG (z) natural logarithm: log.z
r = LOGI10 (x) common logarithm: logyoz
r=SIN (z sine x
r = COS (x) cosine x
r = TAN (z) tangent x
r = ASIN (x) arc sine x
r = ACOS (z) arc cosine x
r = ATAN (z) arc tangent x
r = ATAN2 (z, y) arc tangent x/y
r = SINH (z) hyperbolic sine
r = COSH (z) hyperbolic cosine z
r = TANH () hyperbolic tangent x

Tensor Principal Values and Magnitude Functions

r = PMAX (Th1, Tee, T53, T2, Tos, T51)
r=PMIN (Ty1, Too, Ts3, Tiz, Tos, T51)
r=PMAX2 (T11, Thy, Ti2)
r = PMIN2 (T, Th, Ti2)
r = TMAG (T11, Taa, T3, Ti2, Tosz, Ts1)

maximum principal values
minimum principal values
maximum principal values (2D)
minimum principal values (2D)
magnitude of the deviatoric part

33

IF Functions

r = IFLZ (cond, rtrue, rfalse) | if cond < 0.0, rtrue else rfalse
r = IFEZ (cond, rtrue, rfalse) | if cond = 0.0, rtrue else rfalse
r = IFGZ (cond, rtrue, rfalse) | if cond > 0.0, rtrue else rfalse

Array = Global Variable Functions

r=SUM (z) | sum of z over all nodes or elements
r = SMAX (z) | maximum of z over all nodes or elements
r = SMIN (z) | minimum of z over all nodes or elements

Envelope Functions

r = ENVMAX (z) | maximum of z over all previous time steps
r = ENVMIN (z) | minimum of z over all previous time steps

34

Appendix B

Command Summary

Database Editing Commands (page 17)

TITLE
sets the title to be written to the output database.

Variable Selection Commands (page 18)

SAVE wariabley, variables, ... or optioni, options, ...
transfers variables from the input database to the output database.

DELETE wvariable;, variables, . ..
marks an assigned variable as a temporary variable that will not be writ-
ten to the output database.

Time Step Selection Commands (page 20)

TMIN tmin
sets the minimum selected time to tmin.

TMAX tmax
sets the maximum selected time to tmax.

NINTV nintv
sets the number of selected time intervals to nintv (delta offset).

ZINTV nintv
sets the number of selected time intervals to nintv (zero offset).

DELTIME delt
sets the selected time interval to delt.

ALLTIMES
selects all time steps between tmin and tmax.

TIMES [ADD,] #, ta, ...
selects times t;, to, etc.

STEPS [ADD,] ny, na, ...

35

selects time steps nq, ng, etc.

Mesh Limiting Commands (page 23)

ZOOM zmin, xmax, ymin, ymaz, zmin, zmaz [OUTSIDE]
sets the limits of the mesh to be written to the output database.

VISIBLE [ADD or DELETE,] block_idy, block_ids, . ..
limits the element blocks to be written to the output database.

FILTER ELEMENT wariable lt|le| ge|ne| gt|ge value TIME db_time
will delete all elements that satisfy the specified condition.

REMOVE ELEMENT [GLOBAL or LOCAL] id; ids ... id,
will remove the elements with the specified global or local id(s).

Element Block Selection Commands (page 25)

BLOCKS [ADD or DELETE,) block_idy, block_ida, ...
selects the element blocks which have defined values for all following
equations.

MATERIAL [ADD or DELETE,] block_id;, block_ida, . ..
is exactly equivalent to a BLOCKS command.

36

Information and Termination Commands (page 26)

SHOW command
displays the settings of parameters relevant to the command.

LIST option
displays database information.

HELP option
displays information about the Algebra program.

LOG
requests that the log file be saved when the program is exited.
END

ends the equation input and begins the equation evaluation.

QUIT

ends the equation input and exits the program immediately without writ-
ing an output database.

37

Appendix C

Sample Session

The following is an example session with Algebra. Text following the Algebra
prompt (ALG>) is supplied by the user. The program response (if any) is shown
directly below the equation or command. Comments on the example are in
italics.

ALG> LIST VARS

Database: /User/me/testing/input_databse.e

SAMPLE DATABASE FOR ALGEBRA

Number of coordinates per node = 2
Number of nodes = 644
Number of elements = 480
Number of element blocks = 1
Number of node sets = 0
Number of side sets = 0
Code: MISCPROG version 1.0 on 12/23/85 at 10:21:59

ALG> LIST STEPS

Number of time steps = 21
Minimum time = 0.00
Maximum time = 10.00

38

ALG> SHOW TMAX
Select all times from 0.0 to 10.0
Number of selected times = 21

ALG> TMAX 5.0
Select all times from 0.0 to 5.0
Number of selected times = 11

ALG> NINTV 5
Select times 0.0 to 5.0 in 5 intervals with delta offset
Number of selected times = 5

These commands select up to 5 time steps between 0.0 and 5.0 starting at an
offset (1.0) from 0.0. The steps with the times nearest 1.0, 2.0, 3.0, 4.0, and 5.0
are selected. The equations are evaluated and the results written to the output
database only for the selected steps.

ALG> LIST NAMES

Coordinate names: R Z

Variables Names:

Global: RESIDUAL ENERGY NORM L2NORM
Nodal: DISPLR DISPLZ VELR VELZ ACCELR ACCELZ
Element: SIGR SIGZ SIGT TAURZ EPSR EPST
EPSRZ
ALG> SAVE NODAL
All the input database nodal variables (DISPLR, DISPLZ, ..., ACCELZ) will be

written unchanged to the output database (unless they are assigned a value or
listed in a DELETE command).

39

ALG> VONMISES = (1.0/SQRT(2.0)) * TMAG(SIGR,SIGZ SIGT, TAURZ,0,0)

ALG> EFFSTR = SQRT(L.5) * 5.79E-3 + VONMISES##4 % EXP(-12.0/300.0+1.987)
ALG> PRESS = (SIGR + SIGZ + SIGT) / 3.0

ALG> PRESS100 = (SIGR$100 + SIGZ$100 + SIGT$100) / 3.0

ALG> PHI = EFFSTR — 0.023 — PRESS * (4.43E—8 — 3.7E—15 % PRESS)

ALG> ALPHA = SIGR$56

ALG> BETA = ALPHA + 1.414

Assign element variables VONMISES, EFFSTR, PRESS, and PHI and global vari-
ables PRESS100, ALPHA, and BETA. Note that the PRESS100 equation could
be replaced by “PRESS100 = PRESS$100”.

ALG> DELETE ALPHA

ALPHA (assigned in the equation “ALPHA = SIGR$56” above) becomes a tem-
porary variable and will not be written to the output database.

ALG> BAD = (A + 1)) + SIN (1,2)
x*x* Expected 1 parameter(s) for function SIN, found 2
**x* Parenthesis do not balance
**x "A" is not a database variable
Equation ignored

This equation contains several errors. Each error is flagged and the equation is
ignored.

ALG> END

No further user input is accepted and the equation evaluation begins.

40

	Title
	Introduction
	Changes since original printing

	Equation Input
	The Assigned Variable
	Restricting the Nodes and/or Elements
	Constants
	Variables
	Operators
	Functions

	Command Input
	Database Editing Commands
	Variable Selection Commands
	Time Step Selection Commands
	Mesh Limiting Commands
	Element Block Selection Commands
	Information and Termination Commands

	The Output Exodus Database
	Informational and Error Messages
	Executing Algebra
	Execution Files
	Special Software

	Summary of Functions
	Command Summary
	Sample Session

