
Sierra IO System

Gregory D. Sjaardema

Advanced Computational Mechanics Architectures

Sandia National Laboratories

May 6, 2010

Contents

1 Introduction 1

2 Class Structure Overview 1

2.1 The Ioss Module . 2

2.1.1 Ioss::Region and Ioss::GroupingEntity Classes 2

2.1.2 Ioss::Property and Ioss::PropertyManager . 4

2.1.3 Ioss::Field and Ioss::FieldManager . 4

2.1.4 De�ned Properties and Fields . 6

2.2 Ioss::DatabaseIO Class Hierarchy . 7

2.2.1 Attributes . 8

2.2.2 Interface . 8

2.2.3 Database Traits Interface . 10

3 Special Cases �Dynamic Topology 11

3.1 Element Death . 11

3.2 Load Balance . 11

3.3 Adaptivity . 12

4 Database Registration 12

5 Build System 13

6 Testing 14

7 Summary 14

1 Introduction

The documentation below is a medium- to low-level view of the Sierra IO system targeted at
developers who will be adding or modifying the database IO portion of the system. It should give
enough detail that a new database type could be added by reading this document and looking at

1

an existing database class. It is also helpful to have the doxygen-generated documentation for the
Ioss class hierarchy available.
The IO Subsystem has been designed to support multiple database formats simultaneously. It is
possible to have the �nite element model read from an ExodusII database; two results �les being
written to an ExodusII �le with a third results �le being written to an XDMF �le; and the restart
�le being written to yet another ExodusII �le. Each of these output databases can have a di�erent
schedule for when to write and what data is to be written.
If there are any questions or corrections, please contact Greg Sjaardema at (505) 844-2701 or
gdsjaar@sandia.gov.

2 Class Structure Overview

The three main modules or namespaces involved in the IO are:

Fmwk Main sierra framework namespace. This de�nes and manages the Sierra applications data
structures, algorithms, mechanics, etc. Each Fmwk::Region owns a Frio::IOBroker which is
its link to all bulk data io.

Frio The bridge between the Sierra frameworks data structures and the IO databases data struc-
tures in the Ioss namespace. Ideally all data transfers between Sierra and the IO databases is
under the control of the Frio classes. However, there are some special cases where an appli-
cation will directly interact with the Ioss classes. The Frio::IOBroker manages the Restart,
Mesh, Results, and other databases used by a Fmwk::Region.

Ioss The Ioss namespace contains several classes which attempt to provide an abstract interface
to multiple concrete database types. It also de�nes a lightweight generic representation of the
�nite element model.

2.1 The Ioss Module

There are two major pieces of the Ioss module: The Ioss::DatabaseIO which is a pure virtual
base class from which all concrete IO databases are derived and the Ioss::GroupingEntity classes
which de�ne a lightweight generic model representation.

The current inheritance structure of Ioss::DatabaseIO is shown in Figure 1. Currently the concrete

Figure 1: Ioss::DatabaseIO Inheritance Diagram

database types are ExodusII (Ioex), XDMF (Ioxf), and Heartbeat (Iohb). The Ioss::DatabaseIO
class has a pointer to an Ioss::Region which is the root of the generic model representation.

mailto:gdsjaar@sandia.gov

2.1.1 Ioss::Region and Ioss::GroupingEntity Classes

An Ioss::Region is an Ioss:GroupingEntity and it contains a vector of NodeBlocks, ElementBlocks,
FaceSets, EdgeSets, CommSets de�ning the current model. These are all also Ioss::GroupingEntities.
The Ioss::GroupingEntity inheritance structure is shown in Figure 2. An Ioss::GroupingEntity

Figure 2: Ioss::GroupingEntity Inheritance Diagram

contains an Ioss::PropertyManager which maintains 1 or more Ioss::Property; and an Ioss::FieldManager
which maintains 1 or more Ioss::Field. It also contains a name and a pointer to the Ioss::DatabaseIO.
There is also an Ioss::EntityBlock which contains 1 extra member which is the Ioel::ElementTopology
which is the topology of the entities contained in this block. The collaboration diagram for the
Ioss::GroupingEntity is shown in Figure 3

A GroupingEntity is a very lightweight class; it does not contain any bulk data. It represents a
portion of the �nite element model and can transfer bulk data to/from the database from/to the
Sierra datastructures. It also contains metadata about that portion of the �nite element model.
Each speci�c GroupingEntity type has a few required properties and �elds and some optional
properties and �elds.

The Ioss::GroupingEntity's de�ne the basic �nite element model. For example, a model with two
element blocks, a nodeset, and two sidesets (facesets) is shown in Figure 4.

Note that the FaceSets are further divided into one or more FaceBlocks which contain entities of
homogenous topology.

Each of these GroupingEntity's contain both Properties and Field de�nitions which can be
queried by the Frio classes to de�ne the model.

2.1.2 Ioss::Property and Ioss::PropertyManager

Each Ioss::GroupingEntity class contains an Ioss::PropertyManager which manages the Ioss::Property
on this particular entity. An Ioss::Property is basically a named integer, real, string, or pointer

Figure 3: Ioss::GroupingEntity Collaboration Diagram

Figure 4: Block Diagram of Finite Element Model Structure

value. The PropertyManager maintains a list of all Properties for a speci�c entity and provides
an interface where the Properties can be located by name.

2.1.3 Ioss::Field and Ioss::FieldManager

Each Ioss::GroupingEntity class contains an Ioss::FieldManager which manages the Ioss::Fields
on this particular entity. An Ioss::Field contains the metadata for the �eld it describes; it does
not hold the bulk data, so an Ioss::Field is fairly lightweight. Each Ioss::Field contains:

� std::string name � The name of the �eld.

� Int rawCount_ � The size of the untransformed �eld

� Int transCount_ � The size of the transformed �eld.

� BasicType type_ � The basic type of the �eld (Integer, Real, String)

� const VariableType * rawStorage_ � The storage type of the untransformed �eld (Vector,
Scalar, Tensor,)

� const VariableType * transStorage_ � The storage type of the transformed �eld (Vector,
Scalar, Tensor, ...)

� RoleType role_ � The �role� of the �eld. Valid roles are: INTERNAL, MESH, ATTRIBUTE,
COMMUNICATION, INFORMATION, REDUCTION, and TRANSIENT. The most common are MESH

for describing the model geometry/topology, ATTRIBUTE for block entity attributes (typically
ElementBlock at this time), TRANSIENT for time-dependent results data, and REDUCTION for
�summary �elds� (see below).

� Int size_ � The number of bytes required to store the entire Field. Equal to rawCount_ * sizeof(type_) * (rawStorage_ components).

� std::vector< Iotr::Transform * > ransforms_ � A list of transforms which are applied to this
�eld. Note that the transforms are implemented at the Field level, but are not yet functional

in Sierra applications.

The Ioss::Fields are used for all bulk data input and output. Each Ioss::GroupingEntity contains
a get_field_data and a put_field_data function. The function signatures are:

int get_field_data(const std::string &field_name, void *data, size_t data_size=0)

int put_field_data(const std::string &field_name, void *data, size_t data_size=0)

The functions will get or put the data corresponding to the �eld named field_name; the data will
be read from/written to the memory pointed to by data which is of size data_size. If data_size
is nonzero, then the �eld checks that there is su�cient space to store the �eld data; if it is zero,
then it is assumed to be large enough. The function returns the number of entities for which the
�eld was read/written.

The get_field_data and put_field_data functions are actually at the Ioss::GroupingEntity
level and they forward the call down to internal_get_field_data and internal_put_field_data
which are de�ned on each class derived from Ioss::GroupingEntity. These in turn call1:

1The offset and count were originally intended to provide partial �eld input and output, but this became too
unwieldy and is not used at this time. Only full �eld input or output is supported.

int get_database()->get_field(this, field, offset, count, data, data_size);

get the concrete database class which is responsible for transferring the bulk data to/from the
database to/from the memory pointed to by data of size data_size bytes.

Ioss::Field � Roles As de�ned above, there are six values for a �elds role. The three most
commonly used are:

MESH A �eld which is used to de�ne the basic geometry or topology of the model and is not normally
transient in nature. Examples would be element connectivity or nodal coordinates.

ATTRIBUTE A �eld which is used to de�ne an attribute on an EntityBlock derived class. Examples
would be thickness of the elements in a shell element block or the radius of particles in a
particle element block.

TRANSIENT A �eld which is typically calculated at multiple steps or times in an analysis. These are
typically �results� data. Examples would be nodal displacement or element stress.

REDUCTION A �eld which is typically summarizes some transient data about an entity. The size of
this �eld is typically not proportionate to the number of entities in a GroupingEntity. An
example would be average displacement over a group of nodes or the kinetic energy of a model.
This data is also transient.

Ioss::Field � Storage The �eld storage members de�ne the higher-order type of the variable
such as vector, tensor, etc. The storage class is represented by the Ioss::VariableType base class
which has several derived classes. The four types of derived class are:

� ConstructredVariableType � Specify a name and the number of components. This is typi-
cally used for user-de�ned storage types such as state variables. A speci�c variable may have
86 components, so the user would create composite variable type specifying a name and 86
components. By default, the IO system will create the type as Real[component_count], so
the above type would be known as �Real[86]�.

� CompositeVariableType � A combination (or �composite�) of the other �eld storage classes.
For example, a �eld de�ned on the four integration points of a quadrilateral element would
be a composite of 4 tensors. Currently the composite can only contain two sub�elds.

� Ioel::ElementVariableType � Each element known to the IO system will register a type
which is su�cient for storing its nodal connectivity. For example, a 20-node hex registers the
type Ioel::St_Hex20 which has the name �hex20� and consists of 20 components.

� Prede�ned �common� types. This category encompasses many prede�ned types such as:
Scalar:
Vector: 2D, 3D

Quaternion: 2D, 3D
Full_Tensor: 36, 32, 22, 16, 12
Sym_Tensor: 33, 31, 21, 13, 11, 10

Asym_Tensor: 03, 02, 01

Each variable type will return its component count. It also will return an optional su�x for each
component. For example, the Sym_Tensor_33 will return the su�ces XX, YY, ZZ, XY, YZ, ZX.

2.1.4 De�ned Properties and Fields

All classes derived from GroupingEntity provide the property:

name (String)

In addition, the NodeSet class provides the properties:

entity_count (Integer)
distribution_factor_count (Integer)

And the �elds:

ids (Integer) scalar
distribution_factors (Real) scalar

The EdgeSet and FaceSet classes provides the properties:

block_count (Integer)
edge_block_count (Integer) (for EdgeSet)
face_block_count (Integer) (for FaceSet)

And no additional �elds.

All classes derived from EntityBlock provide the properties:

name (String)
entity_count (Integer)
topology_node_count (Integer)
topology_type (String)
parent_topology_type (String)

And the �elds:

ids (Integer) scalar
connectivity (Integer) topology_node_count

The NodeBlock class provides the additional properties:

component_degree (Integer)

And the additional �elds:

mesh_model_coordinates (Real) component_degree

The ElementBlock class provides the additional properties:

attribute_count (Integer)

If attribute_count is greater than zero, then there will be additional �elds de�ned for the at-
tributes. These �elds will all have the role Ioss::Field::ATTRIBUTE. In addition to the individual
attribute �elds, there will be a single Real �eld named �attribute� which contains a �eld for each
element in the element block; the �eld will have attribute_count components.

The EdgeBlock and FaceBlock classes provides the additional properties:

distribution_factor_count (Integer)

And the �eld:

element_side (Integer) 2 (�rst component is element global id, second is local element ordinal; 1-based

An Ioss::Region is an Ioss::GroupingEntity. In addition to the name property, it also provides
properties that describe the overall structure of the model:

entity_count (Integer)
node_block_count (Integer)
node_block_count (Integer)
element_block_count (Integer)
face_set_count (Integer)
edge_set_count (Integer)
node_set_count (Integer)
comm_set_count (Integer)
node_count (Integer)
element_count (Integer)
state_count (Integer)
current_state (Integer)
database_name (String)

2.2 Ioss::DatabaseIO Class Hierarchy

The Ioss::DatabaseIO class is a virtual base class which de�nes the interface required of each
concrete database format. In addition, it also provides some functionality which is common to all
(or many) database types.

2.2.1 Attributes

The Ioss::DatabaseIO class has the following attributes:

std::string DBFilename �The name of the �le this database is reading or writing.

Ioss::State dbState �An input database will always be in STATE_READONLY which signi�es that
it cannot be written to or modi�ed. An output database follows a set order of access. The
states corresponding to this access are:

STATE_INVALID Error state if something goes wrong.
STATE_UNKNOWN Typically used at the very beginning of the databases ex-

istence when the class has been created, but no reading or
writing has occurred.

STATE_READONLY An input database is only in either STATE_UNKNOWN or in
STATE_READONLY which means that it cannot be written to
or changed.

STATE_CLOSED The states are not nested, so each state must end with a
transition to the STATE_CLOSED prior to entering the next
state.

STATE_DEFINE_MODEL De�ning the metadata which de�nes the model (non-
transient, geometry and topology).

STATE_MODEL Outputting the bulk data (mesh_model_coordinates, ids,
connectivity) relating to the model portion.

STATE_DEFINE_TRANSIENT De�ning the metadata relating to the transient data. For
example, the element or nodal �elds.

STATE_TRANSIENT Outputting the transient bulk data.

bool isParallel � true if running in parallel

int myProcessor � the processor this instance is running on.

TopoContainer faceTopology � There are times when a Sierra application needs to know the
topology of the faces in the model. This container contains a list of the face topology types
in the model. It is populated by the concrete database types.

Ioel::ElementTopology *commonFaceTopology � If there is a single face topology in the model,
this is set to that value; otherwise it is NULL. This is used to speed up some face topology
queries.

2.2.2 Interface

Each concrete database class must derive from the Ioss::DatabaseIO class and provide an imple-
mentation of several functions. The most obvious of these is the constructor:

DatabaseIO (Region *region, const std::string &filename, Ioss::EventInterest db_usage)

The constructor is passed a pointer to an Ioss::Region, a filename, and a `db_usage' �eld. The
region can be NULL at this time if the database is an input database. The db_usage speci�es what this
database will be used for and have valid values of WRITE_RESTART, READ_RESTART, WRITE_RESULTS,
READ_MODEL, WRITE_HISTORY, or WRITE_HEARTBEAT. If this is an output database, then it should
not be opened at this time since the user may have speci�ed the same �le for the reading of an
initial state or a restart and we don't want to overwrite any data that may be needed. If an input
database, then it can be opened to check that it exists, but no major processing of data should
occur.

For an input database, data processing will occur in the `read_meta_data()' function. When this is
called, the database will be in state STATE_DEFINE_MODEL. It should then create all GroupingEntities
and add them to the Region to create the lightweight Ioss model. Any properties should be added

to the GroupingEntities at this time also as should transient �elds. Basically, the Ioss system
should have a complete metadata representation of the model at this time and should be able
to respond to any queries about the model that do not involve bulk data without accessing the
database.

For an output database, the Sierra application through the Frio classes will build the Iossmetadata
representation of the model while in STATE_DEFINE_MODEL. When Ioss::DatabaseIO::end() is called
to exit from STATE_DEFINE_MODEL, then the metadata model is complete and the database can write
whatever non-bulk data is needed at that point.

The Ioss system will next go into the STATE_MODEL at this point and the �elds with a role of MODEL
will be written or read via the �eld interface.

As documented earlier, all bulk data reading and writing is done via Ioss::Fields. The Ioss::DatabaseIO
class has several �eld input and output functions; one for each GroupingEntity type:

int get_field (const Region *reg, const Field &field, void *data, size_t data_size)

int get_field (const NodeBlock *nb, const Field &field, void *data, size_t data_size)

int get_field (const ElementBlock *eb, const Field &field, void *data, size_t data_size)

int get_field (const FaceBlock *fb, const Field &field, void *data, size_t data_size)

int get_field (const EdgeBlock *fb, const Field &field, void *data, size_t data_size)

int get_field (const NodeSet *ns, const Field &field, void *data, size_t data_size)

int get_field (const EdgeSet *es, const Field &field, void *data, size_t data_size)

int get_field (const FaceSet *fs, const Field &field, void *data, size_t data_size)

int get_field (const CommSet *cs, const Field &field, void *data, size_t data_size)

int put_field (const Region *reg, const Field &field, void *data, size_t data_size)

int put_field (const NodeBlock *nb, const Field &field, void *data, size_t data_size)

int put_field (const ElementBlock *eb, const Field &field, void *data, size_t data_size)

int put_field (const FaceBlock *fb, const Field &field, void *data, size_t data_size)

int put_field (const EdgeBlock *fb, const Field &field, void *data, size_t data_size)

int put_field (const NodeSet *ns, const Field &field, void *data, size_t data_size)

int put_field (const EdgeSet *es, const Field &field, void *data, size_t data_size)

int put_field (const FaceSet *fs, const Field &field, void *data, size_t data_size)

int put_field (const CommSet *cs, const Field &field, void *data, size_t data_size)

The implementation of these functions simply do some optional logging and then call the private
pure virtual function put_field_internal(...) with the exact same arguments that they were
called with.2 The underlying concrete database must either read or write the speci�ed �eld when
the function is called. It is recommended to treat the `data' �eld as readonly at this time, so if
any reordering or processing of the data is required, a scratch array should be allocated to hold the
modi�ed data3. One of the �rst �elds read/written from/to most GroupingEntities is the �ids�
�eld. This de�nes a global id for each entity in the GroupingEntity and also de�nes the ordering of
all subsequent �elds on that entity. For example, if the id �eld for a nodeblock is {1,5,2,4,3}, then
a nodal coordinate of {1.0, 2.0, 3.0, 4.0, 5.0} would assign 1.0 to node 1, 2.0 to node 5, 3.0 to node
2, 4.0 to node 4 and 5.0 to node 3. There is a caveat to this which is discussed in a later section.

2See http://www.gotw.ca/publications/mill18.htm for a discussion of why (pure) virtual functions should not
appear in the public interface. Note that this guideline is both respected and violated in Ioss::DatabaseIO....

3I am considering adding an argument to the �eld functions which would indicate whether the `data' can be
modi�ed or should be treated as readonly. This could help a little with memory use, but most cases don't need to
do any modi�cations of the �eld....

http://www.gotw.ca/publications/mill18.htm

Once the STATE_MODEL state is �nished, the application may enter the STATE_DEFINE_TRANSIENT

state for an output database. It will then de�ne what �elds are to be written to each of the
GroupingEntities. Once these �elds are de�ned, the database will enter STATE_TRANSIENT.

In STATE_TRANSIENT, the transient �elds are written. The application will call:

Ioss::DatabaseIO::begin_state(Ioss::Region *region, int state, Real time)

which tells the database that the application will start writing transient �elds applying to time
`time'. The `state' will be an sequentially increasing counter which indicates how many transient
steps have been written. It is 1-based. This function can also be called for an input database if the
application is going to be reading transient data from the input database. In this case, access to
the state can be essentially random; the application does not have to read from step 1...end_step
sequentially. The function:

Ioss::DatabaseIO::end_state(Ioss::Region *region, int state, Real time)

will be called when all transient �elds for this state have been written. At this time, the DatabaseIO
class can do whatever is needed to �nalize this particular timestep.

2.2.3 Database Traits Interface

In addition to the model and �eld-related functions de�ned above, there are a few functions which
specify characteristics of the database. They are:

virtual bool supports_nodal_fields() � true/false depending on whether this database type
supports �elds written on nodes in nodeblocks.

virtual bool supports_edge_fields() � true/false depending on whether this database type
supports �elds written on edges in edgesets.

virtual bool supports_face_fields() � true/false depending on whether this database type
supports �elds written on faces in facesets.

virtual bool supports_element_fields() � true/false depending on whether this database type
supports �elds written on elements in element blocks.

virtual bool supports_nodelist_fields() � true/false depending on whether this database
type supports �elds written on nodes in nodelists.

virtual Int node_global_to_local(Int global, bool must_exist) � Provides a mapping from
a global node id down to the local 1..entity_count position in the �eld data. In the `id' and co-
ordinate example above, the local position of global node `5' is `2'. If the boolean `must_exist'
is true, then it is an error if the speci�ed node does not exist; otherwise if must_exist is false,
then the function returns `0' if a node with that global id does not exist.

virtual int maximum_symbol_length() � Return the maximum length of the `�eld names' that
the database can handle; return 0 if it is unlimited. This is used by the restart system which
must `mangle' the �eld names down to the maximum size that can be supported on the
database.

3 Special Cases �Dynamic Topology

Although the above description is valid for most cases, there are some situations which must be
handled to allow the database to be used in all situations. Dynamic topology which include element
death, load balancing, and adaptivity cause the topology of the original mesh to change from the
originally de�ned topology.

3.1 Element Death

In the element death case, elements are selectively �killed� or inactivated based on some criteria
in the application. Most databases continue to output these elements but they are �agged via an
element variable as whether they are active or inactive. This shouldn't cause much di�culty, but
the Sierra framework reorders the elements when element death occurs, so the output database
must map the element �elds which are not ordered based on the new element ordering back to the
original element ordering so that they can be output correctly. When the element id ordering is
changed, the Frio system will inform the database by calling a put_field on the element block
entities �ids� �eld with the new ordering. This can be distinguished from the original output of the
element ids by the fact that in the original ordering, the database will be in STATE_DEFINE_MODEL;
in any subsequent reordering of the element ids, the database will be in STATE_TRANSIENT. All
subsequent output of element transient �elds will then be in the current ordering and will need to
be mapped to the original ordering before being written to the database.

3.2 Load Balance

The load balance case involves shu�ing the current nodes and elements among processors. One
or more nodes and elements will move to a new processor in this case. The current handling of
this case is suboptimal and is based on the characteristics of the ExodusII database format which
is the primary format currently used in Sierra applications. The ExodusII database creates a �le
per processor and all communications to these databases are independent of all other databases.
At the end of the calculation, a separate program is used to join the per-processor databases into
a single database. Because the per-processor databases are independent, the current handling of a
load balance reshu�ing is that the current databases are all closed and a new set is opened; a new
model is de�ned; the transient �elds are rede�ned; and then everything continues from that point.

This is de�nitely not the optimal situation and will be changing in the future. It is expected that a
new function will be added to the Ioss::DatabaseIO traits interface which will indicate whether a
concrete database instance supports dynamic topology. If it is supported, then the Frio system will
notify the database that shu�ing of elements and nodes among processors has occurred and output
a new set of node, element, face, and edge orderings. If the database does not support dynamic
topology, execution will continue as above.

3.3 Adaptivity

The adaptivity case is handled the same way as the above load balance case. The only di�erence
is if the database is being used to store restart data. In that case, instead of just outputting �elds
existing on all of the current generation nodes and elements; �elds are output on the complete

element and node hierarchy including the parent elements which have been adapted. As stated
above, the current behavior will be changing in the future.

4 Database Registration

Before a database type can be used in a Sierra application, it must be registered and it must provide
a method for creating an instance of itself. This is currently handled via an Ioss::IOFactory class
as shown below:

namespace IoXX {

const IOFactory* IOFactory::factory(){

static IOFactory registerThis;

return ®isterThis;

}

IOFactory::IOFactory()

: Ioss::IOFactory("database_type") {

Ioss::IOFactory::alias("database_type", "alias_for_database_type");

}

Ioss::DatabaseIO* IOFactory::make_IO(const std::string& filename,

Ioss::EventInterest db_usage) const

{ return new DatabaseIO(NULL, filename, db_usage); }

}

The database type must also be made known to the parsing system. This is done by editing the �le
framework/parser/io/Ioss_MeshInput.xml and adding an enum_entry with �database_type�
to the enum DatabaseTypes near the top of the �le.

Since Sierra applications are currently statically linked, some function in your database library must
be called by an existing piece of Sierra code in order for the linker to pull in your library. If the
database is to be available for all codes, the best way to do this is to add a call to your database's
IOFactory to the code in Ioinit::Initializer() as shown below:

namespace Ioinit {

Initializer::Initializer() {

Ioex::IOFactory::factory(); // ExodusII

Iohb::IOFactory::factory(); // HeartBeat

IoXX::IOFactory::factory(); // My new database type

}

}

If the database is only available to a few applications, then the call to the factory() method is
usually placed in the applications main routine. If a database has some �nalization functions which
must be called at the end of execution (this is for a library, not a speci�c database instance), then
a call to that code can be added to the Ioinit::Initializer destructor.

The user can then request this database type in the input �le using the line command Database Type = database_type

or Database Type = alias_for_database_type

5 Build System

The io_system uses the standard Sierra build system which is currently BJam. The main docu-
mentation page for BJam is http://boost.org/boost-build2/index.html, and documentation
for using BJam with Sierra applications can be reached from the Sierra developers documentation
page at http://swi.sandia.gov/developers/develop.php. The build system must also be noti-
�ed that the new library is to be built and linked to the other code. The building of the library is
controlled in the NbtTools/io_system/votd/Jam�le �le. If the new database requires any ex-
ternal libraries (which are referred to as �TPL's� which means �third-party libraries�) which provide
an API or other functionality, they are speci�ed in the rules for the library. For example, the ioex
library (exodusII) requires the exodusII, nemesis, and netcdf libraries and that is speci�ed as:

lib ioex

:

[glob $(io_system-root)/src/exodusII/*.C]

ioss

/sierra/utility//utility

/tpl/exodus//exodus

/tpl/nemesis//nemesis

/tpl/netcdf//netcdf

;

The speci�cation of what library versions will be used is spec�ed in the Nbtools/Jamroot �le:

...

register-product tpl : exodus : exodusii : 4.72 ;

register-product tpl : nemesis : nemesis : 3.09 ;

register-product tpl : netcdf : netcdf : 3.6.2-snl1 ;

...

This speci�es that version 4.72 of the ExodusII library, version 3.09 of the Nemesis library, and
version 3.6.2-snl1 of the netcdf library will be used. Later on in the �le, the Ioex library build
instructions are de�ned as:

lib ioex

:

[glob $(io_system-root)/src/exodusII/*.C]

ioss

/sierra/utility//utility

/tpl/exodus//exodus

/tpl/nemesis//nemesis

/tpl/netcdf//netcdf

;

This speci�es that the Ioex library is to be built. The source code for the library is in src/exodusII.
And it consists of all .C �les in that directory. The Ioex library �requires� the ioss library from
the io_system; the external utility library from /sierra/utility; and the exodus, nemesis, and
netcdf third-party-libraries (tpl). There are similar sections for the other libraries that are part of
the io_system package.

One last piece of information is to tell the build system how to build an application that uses the
IO libraries. The build system is told this in the following code block for the io_shell executable:

http://boost.org/boost-build2/index.html
http://swi.sandia.gov/developers/develop.php

exe io_shell

:

$(io_system-root)/src/main/Main_io_shell.C

ioinit

ioss

iotr

ioxf

/sierra/utility//utility

: <tag>@runtest-tag

;

Using this information, the build system should be able to generate compile �ags and correctly
order the libraries on the link line for the linker. A new database type can be added by following
the patterns for the Ioex, Ioxf, and Iohb database types.

6 Testing

The Sierra unit test system contains an executable called Utst_io which can be used to test the
various DatabaseIO classes. This executable is part of the Sierra system, but it is also available in a
standalone version which can be built outside of the Sierra tools. The executable reads a database
of a speci�ed format and then writes the data to a database of a speci�ed format. This can be used
to test your DatabaseIO class to make sure it reads the data correctly and writes the data correctly.
It can also be used as a translator from one database format to another.

7 Summary

The above documentation gives a brief overview of the Sierra IO system. It is not enough detail for
the reader to add a completely functioning new database type, but hopefully gives enough detail
that the reader can understand existing database IO classes and using those as an example add a
new database type.

There are some idiosyncrasies in the current Ioss system, but hopefully as they are discovered, they
will be removed via refactoring. The current interface is de�nitely biased towards the ExodusII
functionality, but as more database types are added, I will attempt to remove these biases.

	Introduction
	Class Structure Overview
	The Ioss Module
	Ioss::Region and Ioss::GroupingEntity Classes
	Ioss::Property and Ioss::PropertyManager
	Ioss::Field and Ioss::FieldManager
	Defined Properties and Fields

	Ioss::DatabaseIO Class Hierarchy
	Attributes
	Interface
	Database Traits Interface

	Special Cases --Dynamic Topology
	Element Death
	Load Balance
	Adaptivity

	Database Registration
	Build System
	Testing
	Summary

