
SANDIA REPORT
SAND89–0485 . UC–32

Unlimited Release

Printed March 1989

GEN3D: A GENESIS Database 2D to
3D Transformation Program

Amy P. Gilkey, Gregory D. Sjaardema

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-AC04-76DPO0789

SF2900Q(8-81)

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.
NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof or
any of their contractors or subcontractors.

Printed in the United States of America
Available from
National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road
Springfield, VA 22161

NTIS price codes
Printed copy A03
Microfiche copy AO1

...

SAND89-0485

Unlimited Release
Printed March 1989

Distribution

UC-32

GEN3D:

A GENESIS Database 2D to 3D
Transformation Program

Amy P. Gilkey and Gregory D. Sjaardema

Engineering Analysis Department

Sandia National Laboratories

Albuquerque, New Mexico 87185

Abstract

GEN3D is a three-dimensional mesh generation program. The three-dimensional mesh

is generated by mapping a two-dimensional mesh into three dimensions according to

one of four types of transformations: translating. rotating, mapping onto a spherical

surface, and mapping onto a cylindrical surface. The generated three-dimensional

mesh can then be reoriented by offsetting, reflecting about an axis, and revolving

about an axis. GEN3D can be used to mesh geometries that are axisymmetric or

planar, but, due to three-dimensional loading or boundary conditions, require a three-

dimensional finite element mesh and analysis. More importantly, it can be used to mesh

complex three-dimensional geometries composed of several sections when the sections

can be defined in terms of transformations of two-dimensional geometries. The code

GJOIN is then used to join the separate sections into a single body. GEN3D reads

and writes two-dimensional and three-dimensional mesh databases in the GENESIS

database format; therefore, it is compatible with the preprocessing, postprocessing,

and analysis codes used by the Engineering Analysis Department at Sandia National

Laboratories, Albuquerque, NM.

3

Figures

1 Introduction , . .

1.1 Terminology

1.2 Element Blocks

1,3 Front and Back Sets . . .

1.4 Three-Dimensional Output

2 Command Input

2.1 Mesh Transformation . .

~.~ ~lesh Orientation

2.3 Element Block Types . .

2.4 Front and Back Set Definition

2.5 Information and Processing

3 Informational and Error hlessages

4 Executing GEN3D

4.1 Execution Files

4.2 Special Software

References

A The GENESIS Database Format

B Command Summary

C Site Supplements

C.1 VAX hTMS

C.2 CRAY CTSS

.

.

6

7

8

9

10

10

19

21

24

~~

30 “

31

33

35

35

35

37

39

43

45

45

45

Figures

1.1 Simple 2D mesh input to GE.N3D 13

l.~Trans]ation. , . ,0 14

1.3 Rotation around line outside mesh 15

1.4 Rotation around mesh edge 16

1.5 Warpaboutthel’axis 17

2.1 Illustration of Projection Procedure for the WARP POINT Command 25

2.2 Illustration of Mapping Procedure for the WARP azis Command . . 26

1. Introduction

GEN3D is a mesh generation program that creates a three-dimensional mesh from a

two-dimensional mesh by transforming the two-dimensional mesh. Four transforma-

tions are available: (1) translating normal to the plane of the two-dimensional mesh,

(2) rotating the two-dimensional mesh about an axis, (3) mapping the two-dimensional

mesh onto a spherical surface, and (4) mapping the two-dimensional mesh onto a cylin-

drical surface. The resulting geometry is commonly referred to as a 21/2-dimensional

geometry since it can be completely defined in terms of a two-dimensional geometry

and a single transformation. GEN3D is intended to be used with the companion code

GJOIN [3] which joint two or more GENESIS databases into a single database.

GEN3D is compatible with and intended to complement the other mesh generation

programs used in the Engineering Analysis Department at Sandia National Laborato-

ries. The two programs FASTQ [4] and PATRAN [2] are used to generate the majority

of the finite element meshes in the Engineering .Analysis Department. FASTQ is a

two-dimensional mesh generation program that is based on the earlier mesh generator

Q.VESH/RE.TL’.M [1 l;. It has been totally rewritten and enhanced. and also employs

higher-order primitives which have been developed to simplify meshing of commonly

encountered shapes (for example, triangles) and conditions (for example. transitions).

PATRA.Y is a general purpose, two-dimensional and three-dimensional commercial

mesh generation program that can be used to generate. with varying degrees of diffi-

culty, any desired geometry.

Although almost any desired geometry can be defined and meshed with the two pro-

grams FASTQ and PA TRAN, additional mesh generation programs have been. or are

being, developed to reduce the effort required to both define and discretize the ge-

omet ry. Koteras [12,14], Blacker [6,5], and Chavez ~7] are developing automatic. or

semi-automatic, mesh generators for two-dimensional and three-dimensional geome-

tries. These programs are intended to automatically discretize a user-defined geometry

with varying amounts of involvement by the analyst. Research is also in progress to

reduce the time and effort required to define the geometry. Sjaardema ~17), Schut t ~16n,

Chavez [~], and Koteras and Blacker ~13] are investigating methods for linking the out-

put from CAD programs and solid modelers to the input of mesh generation programs

to eliminate or reduce the need to enter the geometry manually.

GEN3D is a simpler approach to three-dimensional mesh generation than the auto-

matic and general-purpose programs cited above. The geometries of many of the

bodies analyzed are axisymmetric or planar; however, due to three-dimensional load-

7

ing or boundary conditions. the body must be analyzed with a three-dimensional finite

element mesh and analysis code. GE.N3D can also be used to mesh complex three-

dimensional geometries composed of several primitives or sections if the primitives can

be defined in terms of transformations of two-dimensional geometries. Each of the

primitives, or as many as possible, can be meshed using GEN3D, and then joined to-

gether using GJO1.N ~3]. The primitives that cannot be meshed with GEN3D can be

meshed with PATRAN and then joined to the other primitives.

GEN3D reads and writes files in the GENESIS [19] database file format which is the

geometry definition portion of the EXODUS [15] database file format used in the En-

gineering Analysis Department at Sandia National Laboratories, Albuquerque, NM.

All of the mesh generation programs in the Engineering Analysis Department write

files in the EXODUS format, and all of the postprocessing programs read EXODUS

format files, Therefore, the two-dimensional mesh input to GEIV3D can be gener-

ated by FASTQ, PATRA:V, or any other two-dimensional mesh generator that writes

the EXODVS file format. The output from GEN3D can be graphically displayed

by BLOT :9]or PATRA.Y, and examined by GROPE [10~ or N[~kfBERS [18:. The

three-dimensional mesh generated by GE.A-3D can be joined to other three-dimensional

meshes using GJO1.Y.

1.1 Terminology

GE.Y3D generates a three-dimensional mesh by transforming a two-dimensional mesh.

The available transformations are:

translation For a translation transformation, the two-dimensional mesh is displaced a

specified amount in the negative Z direction. The three-dimensional mesh is

then generated in the volume between the original mesh and the displaced mesh.

rotation The rotation transformation generates the three-dimensional mesh by rot at -

ing the two-dimensional mesh about an axis parallel to the Y coordinate axis.

The three-dimensional mesh is then generated in the volume “swept” out by the

rotating two-dimensional mesh.

warping The warping transformation maps the two-dimensional mesh onto a circular

surface with a specified radius of curvature. Two surfaces can be specified: a

spherical surface where the center of curvature is a point, and a cylindrical surface

where the center of curvature is a Line that lies in either of the planes defined by

the equations X = O or Y = O.The first warp type is called “point warp” and the

second is called “axis warp” in this document. The warped two-dimensional mesh

is then translated normal to the surface to form the three-dimensional mesh.

1the two.dimension~ mesh is assumed to lie in the X-Y coordinate Plane

8

The term “level” refers to a single translation or rotation. Three-dimensional nodes

and elements that are created by doing a single translation or rotation of the two-

dimensional nodes and elements are said to be “generated from” the two-dimensional

nodes and elements. Normally, one three-dimensional element is generated per level

from each two-dimensional element. One three-dimensional node is generated per level

from each two-dimensional node and an additional node at the back side of the last level

(unless the three-dimensional mesh is rotated 360 degrees). For example, Figure 1.1

shows a two-dimensional mesh with 28 elements and 40 nodes. Figure 1.2 shows the

same mesh translated 10 times. The mesh has 10 levels; 10 elements are generated

from each two-dimensional element resulting in 280 elements; 11 nodes are generated

from each two-dimensional node resulting in 440 nodes.

Each element in the two-dimensional database must be a four-node quadrilateral. The

three-dimensional elements generated from the two-dimensional four-node quadrilater-

als are eight-node hexahedrons.

Figure 1.1 shows a two-dimensional rectangular mesh. Figures 1.2, 1.3, 1.4 and 1.5

display three-dimensional meshes generated from the input mesh. Figure 1.2 shows the

result of a translation. Figure 1.3 shows a rotation around an axis outside the mesh,

Figure 1.4 shows a rotation around an axis at the edge of the mesh, and Figure 1.5

shows a warp about the Y axis.

1.2 Element Blocks

The GENESIS database groups all elements in the mesh into element blocks. Each

block represents a different element type and/or material.

If the mesh is translated, GE.Y3D allows the user to specify a “tunnel’” block to im-

plement a material change through the levels of an input element block. .4 tunnel

block is transformed into several three-dimensional element blocks, each consisting of

the elements in one or more levels. The user specifies the starting and ending levels

and the number of levels in a three-dimensional block with the TUNNEL command.

The tunnel block is commonly used to analyze the sequential mining of a drift in a

geomechanics problem by “killing” the elements in the tunnel blocks as a function of

time.

If the mesh is rotated around the edge of the mesh and the center elements are handled

like other elements, the center elements become six-node wedge-shaped elements and

new nodes are overlaid on the center nodes. To eliminate this problem, the element

blocks which border the center of rotation must be identified (with the CENTER com-

mand) and specially handled. Only one three-dimensional element is generated from

each two-dimensional element bordering the center for each 90-degree quadrant. As

9

the elements get farther from the center, the number of elements generated from each

two-dimensional element increases. Eventually the elements merge with the normal

rot ated elements. Figure 1.4 shows a rotation around the edge of the mesh.

Elements in a center block (CENTER command) must conform to certain restrictions.

An element borders the center if and only if its minimum X coordinate is equal to the

minimum for the mesh. The elements adjacent to the centermost elements are found

by searching the element connectivity. The adjacent. elements must have the same

connectivity structure. For example, the lower left node in each element must appear

in the same slot in the connectivity sequence. The mesh must be rotated a complete

quadrant (90, 180, 270, or 360 degrees) and the number of rotations per quadrant must

be a multiple of 2. If nrot,/nguad is the number of rotations per quadrant, there must

be at least nrot/(2nquad) elements along the X axis in the center block.

1.3 Front and Back Sets

Sets of nodes and sets of element sides may be defined in a GENESIS database. The

two-dimensional sets are transformed into three-dimensional sets and repeated for each

level, The user may create sets of only the front or back of the three-dimensional mesh.

A front node set includes all of the two-dimensional nodes. Similarly. a front side set

includes all of the four-node faces which make up the two-dimensional elements. A back

node or side set includes the nodes or element faces on the back side of the last level.

.4 back node or side set cannot be defined if the three-dimensional mesh is rotated 360

degrees since the generated shape has no “back”; however, front node or side sets may

be defined.

1.4 Three-Dimensional Output

The three-dimensional nodes are numbered so that all the three-dimensional nodes

generated from a two-dimensional node are numbered consecutively. The numbering

of the three-dimensional elements depends on the element block type. For tunnel

blocks. all elements in each level are grouped together with the elements in the next

level. For non-tunnel blocks, all the three-dimensional elements generated from a two-

dimensional element are grouped together.

In general, all three-dimensional items (nodes or elements or sets) generated from a

two-dimensional item for each level are processed before proceeding to the next item.

This is true for the nodal coordinates, the element order map, the element connectivity

(for non-tunnel blocks), the node sets, and the side sets.

10

fianslation Transformation: For translations, the X and Y coordinates are copied

from each t wo-dirnensional node to the three-dimensional nodes generated from it; the

Z coordinate is zero for nodes on the first level and is decreased for the nodes on each

successive level.

Rotation Transformation: For rotations. the X and Z coordinates are functions

of the X coordinate of the two-dimensional node and the angle of each level. The

rotation is counterclockwise if looking down the Y axis, The center of rotation offsets

the X coordinate; the X coordinates of nodes on the first level are copied from the

two-dimensional nodes. The Y coordinates from the two-dimensional nodes are copied

to the generated three-dimensional nodes. The X and Z coordinates are:

z = –(ql – Zc)sino/

x = (z,- Zc)cosq + Zc

where 01 is the rotation angle of level /, ZC is the center of rotation, and Z. is the z

coordinate of the two-dimensional node.

Warping Transformation: Two types of warping transformations are available:

point-centered warp and axis-centered warp. In the warping transformations, the co-

ordinates are functions of the type of warping and the edge type. The point-centered

warp maps the two-dimensional mesh onto a spherical surface. The X and 1- coordi-

nates from the two-dimensional mesh are copied to the generated three-dimensional

mesh and the Z coordinate is calculated from the radius of curvature. A cylindrical

surface is generated by the axis-centered warp. The t we-dimensional coordinates cor-

responding to the warping axis are copied to the three-dimensional mesh; the other

two-dimensional coordinate and the Z coordinate are calculated from the radius of

curvature such that the distance to the three-dimensional node measured along the

generated surface is equal to the original distance in the two-dimensional mesh. The

descriptions of the warp commands in the following chapter describe the warping pro-

cedure in more detail.

Gradient: A gradient can be specified for each of the transformation options. The

gradient affects the spacing oft he levels. The displacement or thickness of level i is i,

where:

{

tottran x
(grad-1

t~ = (gmdn-n ~ 1) if grad # 1;

tottran/ntran if grad = 1.

t, = t~ X (JTQd’-l

11

where toftran is the total translation, grad is the gradient> and nfran is the total number

of translations. For rotations, ioffran is the angle of rotation and t, is the rotation of

level 2.

Orientation: After the three-dimensional mesh has been generated, the final position

and orientation of the mesh are calculated by revolving, offsetting, reflecting. or zeroing.

The specified revolutions are performed, followed by the coordinate offsets, and then

it is reflected about the specified coordinate axes. .411 nodal coordinates less than the

specified tolerance are then zeroed.

Element Attributes: The element attributes from the two-dimensional element are

copied to the three-dimensional elements generated from it.

Side and Node Sets: Each two-dimensional node set is repeated on each level and

the back side of the last level (if any). Each side of an two-dimensional side set is

expanded to four nodes by adding the adjacent two nodes on the next level, and each

set is repeated on each level.

Other Records: Q.% records and coordinate and element block names are only w-rit-

ten to the output database if they existed on the input database. A QA record for

the GE.N3D program is added to the input QA record(s). The coordinate names are

“X”, ‘bY;’, and “Z”. The element block names from the input database should all be

“QUAD”. If so, the names are changed to “HEX’”.

Figure 1.1. Simple 2D mesh input to GEN3D

13

Figure 1.2. Translation

Figure 1.2 shows the meshin Figure 1.1 translated 10 levels. The mesh was created

with the following commands:

TRANSLATE 10, 0.1

END

14

I

Figure 1.3. Rotation around line outside mesh

center of

following

Figure 1.3 shows the mesh in Figure 1.1 rotated 9 levels for a total of 270 degrees. The

rotation is slightly outside the mesh edge. The mesh was created with the
commands:

ROTATE 9, 270, 1,-0.05
END

15

Figure 1.4. Rotation around mesh edge

Figure 1.4 shows the mesh in Figure 1.1 rotated 40 levels for a total of 360 degrees.

The center of rotation is at the edge of the mesh. The mesh was created with the

following commands:

ROTATE 40, 360
CENTER 1

END

16

Figure 1.5. Warp about the Y axis

of 0.04 with a radius of cur~”ature of 0.4.

commands:

WARP Y
END

Figure 1.5 shows the mesh in Figure 1.1 warped about the Y axis for 2 levels for a total
The mesh was created with the following

2 .0410.4

17

18

2. Command Input

The user directs the processing by entering commands to set processing parameters.

The commands are in free-format and must adhere to the following syntax rules.

● Valid delimiters are a comma or one or more blanks.

● Either lowercase or uppercase letters are acceptable, but lowercase letters are

converted to uppercase.

. A “$>’ character in any command line starts a comment. The “S” and any char-

acters following it on the line are ignored.

● A command may be continued over several lines with an “>” character. The “>”

and any characters following it on the current line are ignored and the next line

is appended to the current line.

Each command has an action keyword or ‘-verb” followed by a variable number of

parameters.

A command verb or keyword is a character string matching one of the valid comm~nds.

It may be abbreviated as long as enough characters are used to distinguish it from other

commands.

The meaning and type of the parameters depends on the command verb. Most pa-

rameters are optional. If an optional parameter field is blank, a command-dependent

default value is supplied. Valid entries for parameters are:

● A numeric parameter may be a real number or an integer. A real number may be

in any legal FORTRANT numeric format (e.g., 1, 0.2$ -l E-2). An integer parameter

may be in any legal integer format.

● A string parameter is a literal character string. Most string parameters may be

abbreviated.

The notation conventions used in the command descriptions are:

● The command verb is in bold type.

● A literal string is in all uppercase SAN SERIF type and should be entered as shown

(or abbreviated).

● The value of a parameter is represented by the parameter name in italics.

19

● The default value of a parameter is in angle brackets (“’< >“). The initial value

of a parameter set by a command is usually the default parameter value. If not,

the initial setting is given with the default or in the command description.

2. I Mesh Transformation

TRANSLATE ntran <1>, foffran <1.0>. grad <1.0>, . . .

TRANSLATE causes the 2D mesh to be translated to create the 3D mesh, The

number of levels is nfrczn: which is also the number of 3D elements derived from

each input 2D element. The total range of the Z coordinate is foftran with a

gradient of grad. The translation is always in the negative Z direction. This

command supersedes previous transformation commands.

The gradient affects the spacing of the levels. The displacement or thickness of

level i is ~i where:

{

tottTan x
(grad-l)

(g,adnfr~n–l) if grad # 1;
=1 =

tottran,lntran if gTad = 1.

- x grad’-]:1 = -1

llultiple translation increments can be specified with a single translate command

by repeating the rzfrarz. toffran. gTad parameters on the command line. For

example. the following command specifies two translation increments of thickness

1.0 for a total translation of 2.0:

TRANSLATE 51.00,5, 51.02.0

.411 increments must be specified with a single TRANSLATE command.

ROTATE nrot <1>. tofdeg <360.0>. gTad <1.0>. cenmt <0.0>

ROTATE causes the 2D mesh to be rotated to create the 3D mesh. The number

of rotation levels is nrot, which is also the number of 3D elements derived fr~m

each input 2D element (With the exception of those affected by the CENTER
command). The mesh is rotated a total of nTo~ rotations through a total arc of

totdeg degrees. The angle of each rotation is equal to grad times the previous

rotation. The center of rotation cenrot and the gradient grad are only meaningful

if no center element blocks are defined (see the CENTER command).

The gradient affects the rot ation of the levels. The angular rotation of level i is

9i where:

{

)tot deg X (g,:d::Ot: I)
(

81 =

if gTad # 1;

totdeg/nTot if grad = 1.

2]

Rot at ion is always counterclockwise. This command supersedes previous t rans-

formation commands.

WARP POINT n.tran <1>, tottran <1.0>. grad <l.0>, radius <no default>, edge-iypc

<RADIAL>

WARP POINT causes the 2D mesh to be mapped onto a spherical surface to

create the 3D mesh. The spherical surface has a radius of curvature equal to

radius. The center of curvature is located on the Z-axis, and it is a distance of

radius above the X-Y plane. The number of levels is nfran, which is also the

number of 3D elements derived from each input 2D element. The total thickness

(measured radially) is toiban with a gradient of grad. Note that radius must be

greater than the maximum distance from the Z-axis to the boundary of the 2D

mesh. This command supersedes previous transformation commands.

The edgc_fype, which can be either VERTICAL or RADIAL, determines how the

created nodes are generated. If VERTICAL is selected, the X and Y coordinates

of the generated nodes are equal to the X and Y coordinates of the original 2D

node. If RADIAL is selected. the X and Y coordinates of the generated nodes are

calculated to lie on a line from the center of curvature (0.0, 0.0, radius) to the

coordinates of the warped node (zW. vu, ~~) where ZU and yw are the coordinates

of the original 2D node. and JU is determined such that the distance from the

warped node to the center of curvature is equal to radius. Figure 2,1 illustrates

the VERTICAL edge type, and Figure 2.2 illustrates the RADIAL edge type.

The mesh transformation is performed in two parts, First. the warped nodal

positions (zw, Vu. ;U.) are calculated by mapping the original 2D mesh onto

a spherical surface with a radius of curvature equal to radius. The original X

and Y coordinates of the 2D mesh remain at the same values; the Z coordinate

is calculated such that the distance to the center of curvature is equal to radius.

Zw = Z!o

Yw = ?/0

.zW = radius – ~~radius2 – x; – y;

The warped nodal positions are projections parallel to the Z-axis onto a spherical

surface of radius radius; Figure ‘2.1 illustrates this process. Then, the generated

nodal positions are determined by translating either vertically or radially from

the warped nodal position. A total of ntran translations are performed through

a distance of tottran with a gradient of grad. Note that the thickness is measured

radially for either edge-type.

The gradient affects the spacing of the levels. The thickness or length of level i

is z, where:

{

tottran x
(grad–l)

(gradn~ran-l) if grad # 1:
JI =

tottran/ntran if grad = 1.

.,—
-1 — :1 x grai7-1

WARP azis <no default>. ntran <1>, tottran <1.0>, grad <1.0>, radius <no default>,

edge.type <R.ADI.AL>

This second form of the WARP command maps the 2D mesh to a cylindrical

surface centered on the azis-axis to create the 3D mesh. The azis parameter must

be either X or Y. The cylindrical surface has a radius of curvature equal to radius.

The center of curvature is located a distance of radius above the X-Y plane. The

number of levels is ntran, which is also the number of 3D elements derived from

each input 2D element. The total thickness (measured radially) is ioftran with a

gradient of grad. This command supersedes previous transformation commands.

The edge.fypc, which can be either VERTICAL or RADIAL. determines how the

created nodes are generated. If VERTICAL is selected! the X and Y coordinates

of the generated nodes are equal to the X and Y coordinates of the projected

2D node. If RADIAL is selected. the X and Y coordinates of the generated nodes

are calculated to lie on a line from the center of curvature to the coordinates of

the warped node (xU,, Vu, ZU) where Zu. yU.. and ;U are the coordinates of the

mapped 2D node.

The mesh transformation is performed in two parts. First, the warped nodal

positions (rW, yW, :U) are calculated by mapping the original 2D mesh onto a

cylinder about the azis-axis with a radius of curvature equal to radius. If aris

is X, then the original X-coordinate remains at the same value. The generated

Y and Z coordinates are calculated such that the distance from the generated

node to the X-Z plane measured along the cylindrical surface is equal to the X

coordinate of the node in the 2D mesh. This is illustrated in Figure 2.2. If azis

is Y, the X>s and Y’s are switched in the above discussion. Then, the generated

nodal positions are determined by translating either vertically or radially from

the warped nodal position, A total of ntran translations are performed through

a distance of toitran with a gradient of grad. Note that the distance is measured

radially for either edge. type.

The gradient affects the spacing of the levels. The thickness or length of level i

23

is ~i where:

{

tottran x
(grad-1)

(g,adn!ran–1) if grad # 1:
:1 =

tottran~ntran if grad = 1.

=1 = 21 x gTad’-’

The resulting 3D mesh will have an cylindrical angle of x~,X/ radius radians if

warped about the Y axis, or ymBx/Ta~~us radians if warped about the X axis,

where x~aX an d y~,X are the maximum z and y coordinates in the 2D mesh.

2.2 Mesh Orientation

REVOLVE a+, miegl, azis2, miegz, . . . <last selection>

REVOLVE RESET <initial condition>

REVOLVE causes the transformed 3D mesh to be rotated. Each (azis, mieg)

parameter pair specifies an axis (X or Y or Z) and the number of degrees to

rotate. The axis refers to the “~iewing” axis. not to the object axis. The rotations

are according to right-hand rule. The center of the rotation is specified by the

REVCEN command.

Revolutions are cumulative: however, only one center of revolution may be spec-

ified. The REVOLVE RESET command resets to no rotation.

REVCEN rccn <2D minimum X coordinate>, ycen <2D minimum Y coordinate>,

ccen <0.0>

REVCEN sets the center of revolution for the REVOLVE command to the point

(zcen,ycen,zcen).

OFFSET xofl<().()>, yofi<().()>, zoff<().()>

OFFS ET specifies offsets to be added to the transformed 3D coordinates. If a

REVOLVE command has been issued, the 3D mesh is rotated before it is offset.

MIRROR azisl, azis2, . . . <no default>

MIRROR RESET <no reflections>

Ml RROR causes the transformed 3D mesh to be reflected about a coordinate

plane. Each azis parameter specifies an axis (X or Y or Z) which is the nor-

mal to the reflection plane. Reflections are performed after the mesh has been

repositioned by the REVOLVE and OFFSET commands.

Y

\

z

I

WARP POINT 22220 VERTICAL

mdius

iottmn

—

x

Figure 2.1. Illustration of Projection Procedure for the WARP POINT Command

25

z

WARP Y 22210 RADIAL

\

Y

tOttran

\

Figure 2.2. ~ustration of Mapping Procedure forthe WARP azis Command

26

‘The MIRROR RESET command

Reflections are not cumulative.

reflection about the X axis will

re~et~tono reflection,

that is, if MIRROR X Y X is entered. only one

be performed, If an odd number of reflections

are performed. the element connectivity and the sideset face numberings will be

correctly reordered,

ZERO arisl. mini. arisz. rninz. ., .

ZERO RESET <no automatic zeroing>

ZERO sets all airis, coordinates with an absolute value less than miw equal to zero.

The ZERO RESET command resets to no automatic zeroing. This command is

used to zero nodal coordinates that should be equal to zero, but due to roundoff

errors they have slightly nonzero values.

‘)7

2.3

Each

●

●

●

Element Block Types

element block is assigned one of the following block

.A normal block requires no special handling.

.~ tunnel block (translation only) changes materials

.4 center block (rotation around mesh edge only) has

types:

as it is translated.

some elements which border

the mesh edge that is the center of rotation.

Initially. all blocks are normal blocks.

The blocLid parameter below refers to the element block identifier. The identifiers are

displayed by the SHOW BLOCKS command,

BLOCK block. idl. block-idz. . . . <all element blocks>

BLOCK defines the specified element blocks as normal blocks. This command

supersedes any previous TUNNEL or CENTER commands.

TUNNEL block-id <no default >. sfarf <1>, end <number of levels>. inc <1>

TUNNEL defines the specified element block as a tunnel block. .4 TRANSLATE
command must be in effect before this command is issued. If a ROTATE command

is issued. al] tunnel blocks are changed to normal blocks,

For each tunnel block. a separate 3X) element block is created starting at level

siurd. \vith each block having inc levels. Any levels after level end are put in a

single block.

For example. the commands

TRANSLATE 15, 15.0
TUNNEL 999, 5, 9, 2

create five blocks consisting of the following 3D elements (derived from the 2D

elements of element block 999):

1) the elements in levels 1, ‘2. 3, and 4,

2) the elements in levels 5 and 6.

3) the elements in levels 7 and 8,

4) the elements in level 9,

5) the elements in levels 10, 11, 12, 13, 14, and 15.

The block identifier of the first block is always block-id. The new

assigned consecutive identifiers greater than the maximum existing

identifier.

28

blocks are

(and new)

CENTER Idock.idl. block-idz, . . . <all element blocks>

CENTER defines the specified element blocks as center blocks. .4 ROTATE com-

mand must be in effect before this command is issued. The mesh must be rotated

a complete quadrant (90. 180, 270 or 360 degrees) and the number of rotation

le~els must be a multiple of 2 for each 90 degrees of rotation. If nrot is the num-

ber of rotations. there must be at least nrof/2 elements along the X axis in the

center block.

If a TRANSLATE command is issued, all center blocks are changed to normal

blocks.

If center blocks are defined. the center of rotation defined by the ROTATE com-
mand is ignored. The center of rotation is the minimum coordinate of all elements

in the center blocks.

2.4 Front and Back Set Definition

NSETS FRONT or BACK <no default>. sef.idl. sef.idz. . . . <no default>

NSETS defines front or back node sets with the given identifiers. The identifiers

must be unique from existing node set identifiers and previously defined front

and back node set identifiers.

Back sets cannot be defined on a 360-degree rotation.

SSETS FRONT or BACK <no default>, set.idl, set.idz, . . . <no default>

SSETS is equivalent to the NSETS command except that it defines side sets.

30

2.5 Information and Processing

SHOW command <no parameter>

SHOW displays the set t ings of parameters relevant tot he command. For example.

the command SHOW BLOCK displays information about all the element blocks.

LIST VARS

LIST VARS displa}s a summary of the input database. The summary includes

the database title; the number of nodes, elements, and element blocks: and the

number of node sets and side sets.

HELP command <no parameter>

HELP displays information about the program command given as the parameter.

If no parameter is given, all the command verbs are displayed. This command is

system-dependent and may not be available on some systems.

END

END ends the command input and starts the database transformation.

QUIT

QUIT ends the command input and exits the program immediately without writ-

ing an output database.

31

3. Informational and Error Messages

GEX3D first reads the input database. which must be a valid 2D GENESIS database.

If a database format error is discovered, the program prints an error of the following

format:

DATABASE ERROR - READING database item

and aborts,

.After the database is read. command input is requested from the user. An error or

warning message may appear in response to a command. If an error message appears.

the command is usually ignored. If only a warning is printed, the command is usually

performed. If the message is not sufficiently informative, the appropriate command

description may be helpful. The display after the command shows the effect of the

command.

11’hen the command input is complete. GEA-3D transforms the f?D mesh and writes

the 3D database. The transformation is explained in Section 1.4.

The program allocates memory dynamically as it is needed. If the system runs OUt of

memory. the following message is printed:

FATAL ERROR - TOO MUCH DYNAMIC MEMORY REQUESTED

and the program aborts. The user should first try to obtain more memory on the

system. Another solution is to run the program in a less memory-intensive fashion.

For example, reducing the number of transformations requires less memory.

C;EN3D has certain programmer-defined limit ations. The limits are not specified in

this manual since they may change. In most cases the limits are chosen to be more

than adequate. If the user exceeds a limit, a message is printed. If the user feels the

limit is too restrictive, the code sponsor should be notified so the limit may be raised

in future releases of GEN3D.

33

34

4. Executing GEN3D

The details of executing GEX3D are dependent on the system being used. The system

manager of any system that runs GEN-3D should provide a supplement to this manual

that explains how to run the program on that particular system. Site supplements for

all currently supported systems are in Appendix C.

4.1 Execution Files

The table below summarizes GEN3D’s file usage.

Description Enit Number ~ Type , File Format ~

[-ser input standard input ~ input ~ Section 2 ‘,

t-ser output standard output ~output ! .ASCII ~

GENESIS database 9 ; input ‘ Appendix .4 ~

GENESIS database 10 ~ output ~ Appendix .4 i

All files must be connected to the appropriate unit before GEX3D is run. Each file

(except standard input and output) is opened with the name retrieved by the EXXALIE

routine of the Sl_-PES library ,8..

4.2 Special Software

GEX3D is written in ANSI FORTR.4X-77 l; with the exception of the following

system-dependent features:

● the VAX Vh!S help facility and

● the OPEN options for the files.

GEN3D uses the following software package:

● the S1l PES package [8] which includes dynamic memory allocation, a free-field

reader, and FORTRAN extensions.

35

36

‘1. .

‘~’

,.
3.,

:4;

“5’.,

:6:

.-.
I

.

:$;

[9]

[10]

[11]

.4mcrzcan .Yaizonal Standard Programming Language FOR TR.4.V. Tech.

Rep. AXSI X3.9-1978. American Xational Standards Institute. New York. 1978.

PD.4\ P.4 TR..! .Y– G Ikrsion 2.1 [’scr”s Guide. PD.4 Engineering Software

Products Division. Santa Aria. CA. 1986.

Biffle. J. H.. 1523. “Three-Dimensional Mesh Generation with GJOIX.’” (31emo

to 1.5?0 Staff). Sandia N-ational Laboratories. Albuquerque. NM. October 7.

198!3.

Blacker, T. D., “FASTQ [-sers Ilanual. J“ersion 2.1.”’ S.\ XD8&1326. Sandia

Xational Laboratories. .\lbuquerque. Xll, July 1958.

Blacker. T. D.. Xlitchiner. J. L.. Phillips. L. R., and Lin, Y. T.. ‘bKnowledge

System Approach to Automated Two-Dimensional Quadrilateral IIesh

Generation.”’ in Procccdings of .4.$.IIE Compuiers in Engznecrzng Confcrcnc~.

pp. 1.53-]62. 198$.

Blacker. T. D.. Stephenson. 11. B.. llitchiner. J. L.. Phillips. L. R.. and Lin.

}’. T.. ‘.4utomated Quadrilateral \lesh Generation: .4 Knowledge System

.4pproach.’” ill Proc(td/ngs OJ .4 S.IU’ ll-lntcr .4nnuo/ .Ifccting. 19S$.

(’havez. P. F.. Henderson. XI.. and Razdan. A., ‘“.~utomatic Three-Dimensional

Finite Element llodeling l-sing Solid llodel Data and .Artificial Intelligence

Techniques.’” in Proci~dings of 19$8 .4 S-\lE Intcrnat!onal Computers Ln

Engineering (’onfcrcncc and Exhibition. .August 1988.

Flanagan. D. P.. ~lills-Curran. If”. C.. and Taylor, L. M.. “SVPES A Software

~tilities Package for the Engineering Sciences,” S.4ND86-0911, Sandia National

Laboratories, Albuquerque, NM, September 1986.

Gilkey, A. P., “BLOT-A Mesh and Curve Plot Program for the Output of a

Finite Element Analysis,.. S.AND88-1432. Sandia National Laboratories,

Albuquerque, NM. In preparation.

Gilkey, A. P., “GROPE - -~ GEXESIS/EXODLTS Database Examination

Program,” (RS1523/88/02), Sandia National Laboratories, Albuquerque, NM. In

preparation.

Jones, R. E., “LTsers Manual for Q.MESH, A Self-Organizing Mesh Generation

Program,” SLA-74-0239, Sandia National Laboratories, Albuquerque, ~~~, 1974.

37

’12; Koteras. J, R,. ..Lanlination: .A llethod for Restructuring Quadrilateral and

Hexahedral \Ieshes. ” S.4XD88-3411. Sandia National Laboratories.

.41buquerque. XXI. February 1989,

13; Koteras. J. R. and Blacker. T. D. Communication to G. D. Sjaarderna.

14~ Koteras. J. R.. Selleck. C’. B.. and Jones. R. E.. ‘“.An .~]gorithm for .4utomated

Quadrilateral Mesh Generation for Planar Regions.” S.4XD86-20S9, Sandia

National Laboratories, .Albuquerque. NJI. January]989.

1~~ Alills-Curran, JV. C’.. ~ilke~-: .4. P.. and Flanagan. D. P.. ‘.EXODI’S: .4 Finite

Element File Format for Pre- and Post-processing.” S.41XD87-2977. Sandia

National Laboratories, .41buquerque. Xhl. September 1988.

~16~ Schutt. J. .$.. 1513, “(’omments on Transferring Ilodel Geometry Definitions for

Thermal .Analysis.” (Jlemo to D. L, \loore. 2857). Sandia National Laboratories,

Albuquerque. X3!. .4pril 6.1989.

17! Sjaardema. G. D.. ‘.Finite Element Analysis on \licrocomputers: (’ode

Evaluation Report .’- S.4ND87-288.5. Sandia National Laboratories.

Albuquerque. N\!. NIarch 1988.

]$” Sjaardema. G. D.. ‘-X[-IIBERS. .4 Ilass Properties (’calculation Program for

Finite Element 310dels.” S.AYD88-073i’. Sandia >ational Laboratories.

.Albuquerque. S11. In preparation.

“19’ Taylor. L. il.. Flanagan. D. P.. and llills-C’urran. \Y. C.. “The GE\ESIS Finite.
Element Ilesh File Fornlat,-’ S.AXDS6-O91O. Sandia National Laboratories.

Albuquerque. XNf. May 1986.

38

A. The GENESIS Database Format

The following code segment reads a GENESIS database.

c

c

c

c

c
c
c
c
c
c
c
c
c

c

c

--Open the GENESIS database file

NDB = 9

OPEN (UNIT=NDB , STATUS= ‘ OLD‘ , Few= ‘~FOwATTED ‘)

--Read the title

READ (NDB) TITLE

--TITLE - the title of the database (CHARACTER*80)

--Read the database sizing parameters

READ (NDB) NUMNP, NDIM, NWEL, NELBLK,

& NUMNPS, LNPSNL, NUMESS, LESSEL, LE~SNL

--NUMNP - the number of nodes

--NDIM - the number of coordinates per node

--NUMEL - the number of elements

--NELBLK - the number of element blocks

--NUMNPS - the number of node sets

--LNPSNL - the length of the node sets node list

--NUMESS - the number of side sets

--LESSEL - the length of the side sets element list

--LESSNL - the length of the side sets node list

--Read the nodal coordinates

READ (NDB) ((CORD(INp,I), INP=I,NuMNp), I=I,NDIW

--Read the element order map (each element must be listed once)

READ (NDB) (MAPEL(IEL), IEL=l,NUMEL)

39

c

c

c
c
c
c
c
c
c

c

c

--Read the element blocks

DO 100 IEB = 1, NELBLK

--Read the sizing parameters for this element block

READ (NDB) IDELB, N~ELB, N~LNK, NATRIB

--IDELB - the element block identification (must be unique)

--NUMELB - the number of elements in this block
-. (the sum of NUMELB for all blocks must equal NUMEL)

--NUMLNK - the number of nodes defining the connectivity
-- for an element in this block

--NATRIB - the number of element attributes for an element
-- in this block

--Read the connectivity for all elements in this block

READ (NDB) ((LINK(J,I), J=I,NUT4LNK,I=I,NUMELB)

--Read the attributes for all elements in this block

READ (NDB) ((ATRIB(J,I), J=l,NATRIB, l=l,NtiELB)

100 CONTINUE

40

c --Read the node sets

READ (NDB) (IDNPS(I), I=I,NUMNpS)

c --IDNPS - the ID of each node set

READ (NDB) (NNNpS(I), I=I,NuMNpS)

c --NNNPS - the number of nodes in each node set

READ (NDB) (IXNNpS(I), I=I,N~NPS)

c --IXNNPS - the index of the first node in each node set

c -- (in LTNNPS and FACNPS)

READ (NDB) (LTNNPS(I), I=l,LNpSNL)

c --LTNNPS - the nodes in all the node sets

READ (NDB) (FACNPS(I), I=i,LNpSNL)

c --FACNPS - the factor for each node in LTNNPS

c --Read the side sets

c

c

c

c

c

c

c

READ (NDB) (IDESS(I), I=I,NUMESS)

--IDESS - the ID of each side set

READ (NDB) (NEESS(I), I=I,NUMESS)
--NEESS - the number of elements in each side-set

READ (NDB) (NNESS(I), I=I,NuMEsS)

--NNESS - the number of nodes in each side set

READ (NDB) (IXEESS(I), I=I,NUMESS)

--IXEESS - the index of the first element in each side set
.- (in LTEESS)

READ (NDB) (IXNESS(I), I=l,N~ESS)

--IXNESS - the index of the first node in each side set
-- (in LTNESS and FACESS)

READ (NDB) (LTEESS(I), I=I,LESSEL)

c --LTEESS - the elements in all the side sets

READ (NDB) (LTNESS(I), l=I,LEWL)

c --LTNESS - the nodes in all the side sets

READ (NDB) (FACESS(I), I=I,LESSNL)

c --FACESS - the factor for each node in LTNESS

41

A valid GENESIS database may end at this point or after any point described below.

c --Read the QA header information

READ (NDB, END= ...) NQAREC

c --NQAREC - the number of QA records (must be at least 1)

c
c
c
c
c

DO 110 IQA = 1, MAX(l,NQAREC)

READ (NDB) (QATITL(l,IQA), 1=1,4)

--QATITL - the QA title records; each record contains:
-- 1) analysis code name (CHARACTER*8)
.- 2) analysis code qa descriptor (CHARACTER*8)
-- 3) analysis date (CHARACTER*8)
.- 4) analysis time (CHARACTER*8)

110 CONTINUE

c --Read the optional header text

READ (NDB, END=. ..) NINFO

c --NINFO - the number of information records

DO 120 I = 1, NINFO

READ (NDB) INFO(I)

c --INFO - extra information records (optional) that contain

c -- any supportive documentation that the analysis code

c -- developer wishes (CHARACTER*80)

120 CONTINUE

c --Read the coordinate names

READ (NDB, END=...) (NAMECO(I), 1=1 ,NDIM)

c --NAMECO - the coordinate names (CHARACTER*8)

c --Read the element type names

REAr) (ND13, END=.. .) (NAMELB(I) , 1=1 ,NELBLK)
c --NAMELB - the element type names (CHARACTER*8)

42

B. Command Summary

Mesh Transformation (page 21)

TRANSLATE ntrarz, toihwz, grad, . . .

causes the 2D mesh to be translated to create the 3D mesh.

ROTATE nroi, toideg, grad, cen~oi

causes the 2D mesh to be rotated to create the 3D mesh.

WAR P POINT ntran, tottran, grad, radius, edge-type

maps the 2D mesh onto a sphere of radius radius and then translates to create
the 3D mesh.

WAR P axis, ntran,

maps the 2D

translates to

tottran, grad, radius, edge-type

mesh onto a cylinder of radius radius about the azis-axis and then

create the 3D mesh.

Mesh Orientation (page 24)

REVOLVE azisl, ndegl, arisz, ndegz, . . .

REVOLVE RESET

causes the transformed 3D mesh to be rotated.

REVCEN zcen, ycen, zcen

sets the center of rotation for the REVOLVE command.

OFFSET ZOfl, ~Ofl, ZOfl

specifies the coordinate offsets for the transformed 3D mesh.

MIRROR azisl, azisz, . . .

MIRROR RESET

causes the transformed 3D mesh to be reflected about the specified axes.

ZERO azisl, mini, azisz, minz, . . .

ZERO RESET

sets all azis2 coordinates with an absolute value less than mini equal to zero.

43

Element Block Types (page 28)

BLOCK h/OCk.2(iI, b/0Ck_2&, . . .

defines element blocks as normal blocks (no special handling).

TUNNEL block. id, start, end, inc

defines an element block as a tunnel block, with tunnels starting at level start to

level end, incrementing by inc.

CENTER block-idl, block.idz, . . .

defines element blocks as center blocks (bordering the mesh edge that is the

center of rotation).

Front and Back Set Definition (page 30)

NSETS FRONT/BACK, set..idl, set-idz, . . .

defines front or back node sets.

SSETS FRONT/BACK: sef_idl, set_idz, . . .

defines front or back side sets.

Information and Processing (page 31)

SHOW command

displays the processing parameters set by a command.

LIST VARS

displays summary information about the input database.

HELP command

displays information about a GEN3D command.

END

ends command input and starts processing.

QUIT

quits command input and aborts processing.

44

C. Site Supplements

C.1 VAX VMS

The command to execute GEN3D on VMS is:

GEN3D 2D.database 3D_database user-input

2D-database is the filename of the input GENESIS database. A prompt appears if

2D-daiabase is omitted. The default is TAP E9.GEN.

3D.daiabase is the filename of the output GENESIS database. A prompt appears

if 3D-database is omitted. The default is the base filename of 2D-database with the

extension .GEN3D.

If user. input is given, the user input is read from this file. Otherwise it is read from

SYS$INPUT (the terminal keyboard). User output is directed to SYS$OUTPUT (the

terminal).

GEIS3D operates in either interactive or batch modes.

C.2 CRAY CTSS

To execute GEN3D, the user must have selected the acclib library and be running ccl.

The command to execute GEN3D on CTSS is:

gen3d 2D_database 3D-database i=input o=output

2D_database is the filename of the input GENESIS database. The default is tape9.

5’D-database is the filename of the output GENESIS database. The default is tapelO.

User input is read from input, which defaults to tty (the terminal). User output is

directed to output, which defaults to tty (the terminal).

45

Distribution:
1510 J. W. Nunziato

1511 D. K. Gartling

1520 L. W. Davison

1521 R. D. Krieg and Staff (12)

1521 G. D. Sjaardema (30)

1522 R. C. Reuter, Jr. and Staff (15)

1523 J. H. Biilie and Staff (12)

1524 A. K. Miller and Staff (12)

1530 D. B. Hayes

1531 S. L. Thompson

1533 S. T. Montgomery

1533 A. C. Robinson

1550 C. W. Peterson, Jr.

1556 W. L. Oberkampf

2814 P. F. Chavez

3141 S. A. Landenberger (5)

3151 W.I. Klein (3)

3154-1 for DOE/OSTI (8)

6258 D. S. Preece

6314 L. S. (’ostin
63’2~ R. E. Glass

6334 H. J. Iuzzolino

6334 R. D. McCurley

6334 J. S. Rath

6334 R. P. Rechard

6334 E. Shepherd

8240 C. W. Robinson

8241 G. A. Benedetti

8242 M. R. 13irnbaum

8243 M. L. Callabresi

8244 C. M. Hartwig

8245 R. J. Kee

8524 J. A. Wackerly

46

	Abstract
	Contents
	Figures
	1. Introduction
	1.1 Terminology
	1.2 Element Blocks
	1.3 Front and Back Sets
	1.4 Three-Dimensional Output

	2. Command Input
	2. I Mesh Transformation
	2.2 Mesh Orientation
	2.3 Element Block Types
	2.4 Front and Back Set Definition
	2.5 Information and Processing

	3. Informational and Error Messages
	4. Executing GEN3D
	4.1 Execution Files
	4.2 Special Software

	References
	A. The GENESIS Database Format
	B. Command Summary
	C. Site Supplements
	Distribution

