pytuq.func.bench1d
1d benchmark functions module.
Most of the functions are taken from https://github.com/Vahanosi4ek/pytuq_funcs.
Classes
TensorFlow function |
|
Simple sum of sines |
|
A more complex sum of sines |
|
Product of quadratic and exponent |
|
Product of linear and sine functions |
|
Product of sine and exp functions |
|
Sum of sine and log functions |
|
Simple sum of cosines |
|
Product of x and sine function |
|
Simple sum of cosines |
|
Simple 1d sine function |
|
Forrester function |
|
Complicated oscillatory 1d function |
|
Higdon function |
|
Holsclaw function |
|
A simple 1d cosine function |
Module Contents
- class pytuq.func.bench1d.TFData(name='tfdata')[source]
Bases:
pytuq.func.func.FunctionTensorFlow function
Data generating toy model inspired by https://colab.research.google.com/github/tensorflow/probability/blob/master/tensorflow_probability/examples/jupyter_notebooks/Probabilistic_Layers_Regression.ipynb#scrollTo=5zCEYpzu7bDX .
\[f(x)=w_0 x (1 + \sin(x)) + b_0\]Default constant values are \(w_0 = 0.125\), \(b_0 = 5.0\), \(a = -20.0\), \(b = 60.0\).
- class pytuq.func.bench1d.SineSum(c1=1.0, c2=10.0 / 3.0, name='SineSum')[source]
Bases:
pytuq.func.func.FunctionSimple sum of sines
Problem 02 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem02]
\[f(x)=\sin(c_1x)+\sin(c_2x)\]Default constant values are \(c = (1., 10./3.)\).
- class pytuq.func.bench1d.SineSum2(c1=6, name='SineSum2')[source]
Bases:
pytuq.func.func.FunctionA more complex sum of sines
Problem 03 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem03]
\[f(x)=-\sum_{k=1}^{c_1}k\sin((k+1)x+k)\]Default constant value is \(c = 6\).
- class pytuq.func.bench1d.QuadxExp(c1=16.0, c2=-24.0, c3=5.0, name='QuadxExp')[source]
Bases:
pytuq.func.func.FunctionProduct of quadratic and exponent
Problem 04 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem04]
\[f(x)=-(c_1x^2+c_2x+c_3)e^{-x}\]Default constant values are \(c = (16., -24., 5.)\).
- class pytuq.func.bench1d.LinxSin(c1=1.4, c2=-3.0, c3=18.0, name='LinxSin')[source]
Bases:
pytuq.func.func.FunctionProduct of linear and sine functions
Problem 05 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem05]
\[f(x)=-(c_1-c_2x)sin(c_3x)\]Default constant values are \(c = (1.4, -3., 18.)\).
- class pytuq.func.bench1d.SinexExp(name='SinexExp')[source]
Bases:
pytuq.func.func.FunctionProduct of sine and exp functions
Problem06 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem06]
\[f(x)=-(x+\sin(x))e^{-x^2}\]
- class pytuq.func.bench1d.SineLogSum(c1=1.0, c2=10 / 3, c3=np.exp(1), c4=-0.84, c5=3.0, name='SineLogSum')[source]
Bases:
pytuq.func.func.FunctionSum of sine and log functions
Problem07 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem07]
\[f(x)=\sin(c_1x) + \sin(c_2x) + \log_{c_3}(x) + c_4x + c_5\]Default constant values are \(c = (1., 10/3, e, -0.84, 3.)\).
- class pytuq.func.bench1d.CosineSum(c1=6, name='CosineSum')[source]
Bases:
pytuq.func.func.FunctionSimple sum of cosines
Problem 08 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem08]
\[f(x)=-\sum_{k=1}^{c_1}k\cos((k+1)x+k)\]Default constant value is \(c = 6\).
- class pytuq.func.bench1d.Sinex(name='Sinex')[source]
Bases:
pytuq.func.func.FunctionProduct of x and sine function
Problem10 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem10]
\[f(x)=-x\sin(x)\]
- class pytuq.func.bench1d.CosineSum2(c1=2.0, c2=2.0, name='CosineSum2')[source]
Bases:
pytuq.func.func.FunctionSimple sum of cosines
Problem11 [https://infinity77.net/global_optimization/test_functions_1d.html#go_benchmark.Problem11]
\[f(x)=c_1\cos(x) + \cos(c_2x)\]Default constant values are \(c = (2., 2.)\).
- class pytuq.func.bench1d.Sinusoidal(c1=2.0, c2=0.1, name='Sinusoidal')[source]
Bases:
pytuq.func.func.FunctionSimple 1d sine function
Sinusoidal [https://www.sfu.ca/~ssurjano/curretal88sin.html]
\[f(x)=\sin(c_1\pi(x-c_2))\]Default constant values are \(c = (2., 0.1)\).
- class pytuq.func.bench1d.Forrester(c1=6.0, c2=2.0, c3=12.0, c4=4.0, name='Forrester')[source]
Bases:
pytuq.func.func.FunctionForrester function
Forrester [https://www.sfu.ca/~ssurjano/forretal08.html]
\[f(x)=(c_1x-c_2)^2\sin(c_3x-c_4)\]Default constant values are \(c = (6., 2., 12., 4)\).
- class pytuq.func.bench1d.GramacyLee2(c1=10.0, c2=2.0, c3=1.0, c4=4.0, name='GramacyLee2')[source]
Bases:
pytuq.func.func.FunctionComplicated oscillatory 1d function
Gramacy and Lee (2012) [https://www.sfu.ca/~ssurjano/grlee12.html]
\[f(x)=\frac{\sin(c_1\pi x)}{c_2x}+(x-c_3)^{c_4}\]Default constant values are \(c = (10., 2., 1., 4.)\).
- class pytuq.func.bench1d.Higdon(c1=10.0, c2=0.2, c3=2.5, name='Higdon')[source]
Bases:
pytuq.func.func.FunctionHigdon function
Higdon (2002) [https://www.sfu.ca/~ssurjano/hig02.html]
\[f(x)=\sin(2\pi x/c_1) + c_2\sin(2\pi x/c_3)\]Default constant values are \(c = (10., 0.2, 2.5)\).
- class pytuq.func.bench1d.Holsclaw(c1=10.0, name='Holsclaw')[source]
Bases:
pytuq.func.func.FunctionHolsclaw function
Holsclaw et al. [https://www.sfu.ca/~ssurjano/holsetal13sin.html]
\[f(x)=\frac{x\sin(x)}{c_1}\]Default constant value is \(c = 10.0\).
- class pytuq.func.bench1d.DampedCosine(c1=-1.4, c2=3.5, name='DampedCosine')[source]
Bases:
pytuq.func.func.FunctionA simple 1d cosine function
Damped Cosine [https://www.sfu.ca/~ssurjano/santetal03dc.html]
\[f(x)=e^{c_1x}\cos(c_2\pi x)\]Default constant values are \(c = (-1.4, 3.5)\).