:orphan:
Software Tutorials
===================
Welcome to the PyTUQ Tutorials page! Here, you'll find a series of comprehensive tutorials designed to
showcase the functionality of PyTUQ and guide you through its core features.
Surrogates
~~~~~~~~~~~
PyTUQ supports the construction of various surrogate models, including Polynomial Chaos Expansions for multivariate
random variables and Neural Networks, which can be accessed through the Quantification of Uncertainties in Neural Networks (QUiNN) library.
.. raw:: html
.. thumbnail-parent-div-open
.. raw:: html
.. only:: html
.. image:: /auto_examples/images/thumb/sphx_glr_ex_pce_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_ex_pce.py`
.. raw:: html
Polynomial Chaos Expansion Construction
.. raw:: html
.. only:: html
.. image:: /auto_examples/images/thumb/sphx_glr_ex_nn_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_ex_nn.py`
.. raw:: html
Residual Neural Network Construction
.. raw:: html
.. only:: html
.. image:: /auto_examples/images/thumb/sphx_glr_ex_genz_bcs_thumb.png
:alt:
:ref:`sphx_glr_auto_examples_ex_genz_bcs.py`
.. raw:: html
Function Approximation with Sparse Regression
.. thumbnail-parent-div-close
.. raw:: html
.. toctree::
:hidden:
/auto_examples/ex_pce
/auto_examples/ex_nn
/auto_examples/ex_genz_bcs
.. only:: html
.. container:: sphx-glr-footer sphx-glr-footer-gallery
.. container:: sphx-glr-download sphx-glr-download-python
:download:`Download all examples in Python source code: auto_examples_python.zip `
.. container:: sphx-glr-download sphx-glr-download-jupyter
:download:`Download all examples in Jupyter notebooks: auto_examples_jupyter.zip `
.. only:: html
.. rst-class:: sphx-glr-signature
`Gallery generated by Sphinx-Gallery