
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

The Zoltan Toolkit – Partitioning,
Ordering, and Coloring

Erik Boman, Cedric Chevalier, Karen Devine
Sandia National Laboratories, NM

Ümit Çatalyürek
Ohio State University

Dagstuhl Seminar, Feb 2009

Slide 2

Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Partitioning and Dynamic Load Balancing
• Graph Coloring
• Matrix Ordering
• Alternate Interfaces
• Future Directions
• Demo
• Hands-On Examples

Slide 3

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring

Slide 4

Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.

• Requirements:
– C compiler (C++ optional)
– GNU Make (gmake)
– MPI required for parallel execution

Slide 5Zoltan Supports
Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Slide 6

Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Slide 7

Zoltan Interface
• Fairly simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)

Slide 8

Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.

Slide 9

(Re)partition
(Zoltan_LB_Partition)

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn) COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION
Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN

Slide 10

Zoltan Query Functions

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 11

Using Zoltan in Your Application
1. Download Zoltan.

 http://www.cs.sandia.gov/Zoltan
2. Build Zoltan library.
3. Decide what your objects are.

 Elements? Grid points? Matrix rows? Particles?
4. Decide which tools (partitioning/ordering/coloring/utilities)

and class of method (geometric/graph/hypergraph) to use.
5. #include “zoltan.h” in files calling Zoltan.
6. Write required query functions for your application.

 Required functions are listed with each method in Zoltan
User’s Guide.

7. Call Zoltan from your application.
8. Compile application; link with libzoltan.a.

 mpicc application.c -lzoltan

Slide 12

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….

Slide 13

Partitioning Interface

 Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)
Note that parts may differ from processors.

err = Zoltan_LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);

Slide 14

Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Largest processor time is minimized.
– Inter-processor communication costs are kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End

Slide 15Dynamic Repartitioning
(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Largest processor time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);

Slide 16Zoltan Toolkit:
Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.

Slide 17Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection
Recursive Inertial Bisection

Graph Partitioning
ParMETIS (Karypis et al.)

PT-Scotch (Pellegrini et al.)

Hypergraph Partitioning
Hypergraph Repartitioning
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
Refinement-tree Partitioning

Slide 18

Geometric Partitioning
• Partition based on geometric locality of objects.

– Assign physically close objects to the same processor.
• Communication costs are controlled only implicitly.

– Assumption: objects that depend on each other are physically
near each other.

– Reasonable assumption for particle simulations, contact
detection and some meshes.

Recursive Coordinate Bisection (RCB)
Berger & Bokhari, 1987

Recursive Inertial Bisection (RIB)
Simon, 1991; Taylor & Nour Omid, 1994

Space Filling Curve Partitioning (HSFC)
Warren & Salmon, 1993;

Pilkington & Baden, 1994; Patra & Oden, 1995

Slide 19

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Recursive Coordinate Bisection
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);
• Berger & Bokhari (1987).
• Idea:

– Divide work into two
equal parts using a
cutting plane
orthogonal to a
coordinate axis.

– Recursively cut the
resulting
subdomains.

Slide 20

Geometric Repartitioning
• Implicitly achieves low data redistribution
costs.

• For small changes in data, cuts move only
slightly, resulting in little data redistribution.

Slide 21

Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

Slide 22Geometric Methods:
Advantages and Disadvantages

• Advantages:
– Conceptually simple; fast and inexpensive.
– All processors can inexpensively know entire partition (e.g.,

for global search in contact detection).
– No connectivity info needed (e.g., particle methods).
– Good on specialized geometries.

• Disadvantages:
– No explicit control of communication costs.
– Mediocre partition quality.
– Can generate disconnected subdomains for complex

geometries.
– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)

Slide 23

Graph Partitioning

• Represent problem as a weighted graph.
– Vertices = objects to be partitioned.
– Edges = dependencies between two

objects.
– Weights = work load or amount of

dependency.
• Partition graph so that …

– Parts have equal vertex weight.
– Weight of edges cut by part boundaries is

small.

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or
 Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

• Kernighan, Lin, Simon, Hendrickson, Leland, Kumar, Karypis, et al.

Slide 24

Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
– Shift work from highly loaded

processors to less loaded neighbors.
– Local communication keeps data

redistribution costs low.

• Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)
– Parameter weights application communication vs.

redistribution communication.

10
1010

10

20
30

30

10

10

20

20
20

20

Partition

coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph

Slide 25Applications using Graph
Partitioning

x bA

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Slide 26Graph Partitioning:
Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
– Explicit control of communication volume gives higher

partition quality than geometric methods.
– Excellent software available.

• Serial: Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Scotch (U. Bordeaux)

• Parallel: Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)
PT-Scotch (LaBRI/INRIA)

• Disadvantages:
– More expensive than geometric methods.
– Edge-cut model only approximates communication volume.

Slide 27

A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

• Schweikert, Kernighan, Fiduccia, Mattheyes, Sanchis, Alpert, Kahng,
Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.

• Hypergraph model:
– Vertices = objects to be partitioned.
– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.

Slide 28

Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Çatalyürek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight dependencies by their size and frequency of use.

• Partitioning then tries to minimize total communication volume:
 Data redistribution volume
 + Application communication volume
 Total communication volume

• Data redistribution volume: callback returns data sizes.
– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,

myObjSizeFn, 0);
• Application communication volume = Hyperedge cuts * Number

of times the communication is done between repartitionings.
– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);

Slide 29

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1

2

Rl
R

1

2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Slide 30Hypergraph Partitioning:
Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– Usually more expensive than graph partitioning.

Slide 31

Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– Available in RCB, RIB and

ParMETIS graph partitioning.
– In progress in Hypergraph

partitioning.

Slide 32

Heterogeneous Architectures
• Clusters may have different types of processors.
• Assign “capacity” weights to processors.

– E.g., Compute power (speed).
– Zoltan_LB_Set_Part_Sizes(…);

• Note: Can use this function to specify part sizes for any purpose.
• Balance with respect to processor capacity.

• Hierarchical partitioning: Allows different partitioners at
different architecture levels.

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);
– Requires three additional callbacks

to describe architecture hierarchy.
• ZOLTAN_HIER_NUM_LEVELS_FN
• ZOLTAN_HIER_PARTITION_FN
• ZOLTAN_HIER_METHOD_FN

Entire System

...Processor Processor

Core Core...Core Core...

Slide 33

Graph Coloring
• Problem: Color the vertices of a graph with as few

colors as possible such that no two adjacent
vertices have the same color.

– Distance-2: No vertices connected by a length-2 path
have the same color

• Applications
– Iterative sparse solvers
– Preconditioners
– Automatic differentiation
– Sparse tiling

Slide 34

Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph coloring.
• Graph built using same application interface and code

as graph partitioners.
• Generic coloring interface; easy to add new coloring

algorithms.
• Algorithms

– Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

– Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’09 (in
submission).

Slide 35

Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines are invoked by the Zoltan_Color

function.

• Graph query functions required.

• The colors assigned to the objects are

returned in an array of integers.

Slide 36

A Parallel Coloring Framework
• Color vertices iteratively in rounds using a first
fit strategy.

• Each round is broken into supersteps:
– Color a certain number of vertices.
– Exchange recent color information.

• Detect conflicts at the end of each round.
• Repeat until all vertices receive consistent
colors.

Slide 37

Experimental Results

Slide 38

Sparse Matrix Ordering Problem
• Work and fill in sparse direct solvers
(Cholesky, LU) depend on the matrix ordering.

– Optimal ordering is NP-hard.
– Many heuristics: Nested dissection, minimum

degree, etc.
– Nested dissection is preferred for parallel

processing.

A PAPTL L’

Slide 39

Matrix ordering within Zoltan
• Computed by third party libraries:

– ParMETIS
– Scotch (actually PT-Scotch, the parallel part) ‏
– Easy to add another one.

• The calls to the external ordering library are
transparent for the user. Thus Zoltan’s API can
be a standard way to compute ordering.

• Native ordering in Zoltan planned.

Slide 40

Ordering interface in Zoltan

•Compute ordering with one function:
Zoltan_Order

•Output provided:
–New order of the unknowns (direct

permutation), available in two forms:
• one is the new number in the interval [0,N-1];
• the other is the new order of Global IDs.

–Access to elimination tree, “block” view of
the ordering.

Slide 41

Comparison PT-Scotch vs ParMetis

3.825.659.8017.1523.0932.69tPM

18.1624.7433.8345.1953.1973.11tPTS

1.07E+138.91E+128.88E+127.78E+126.37E+125.82E+12OPM

5.45E+125.45E+125.45E+125.54E+125.65E+125.73E+12OPTS

audikw1

643216842case

Number of processesTest

Slide 42

Summary of Matrix Ordering
• Zoltan provides access to efficient parallel
ordering for sparse matrices.

– PT-Scotch gives best quality (but longer time).
• Zoltan provides a standard way to call parallel
ordering.

• Zoltan will provide also its own ordering tool in
the future, for non-symmetric problems.

– HUND algorithm (talk by S. Donfack)

Slide 43

Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionality described in Zoltan User’s Guide.
– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

Slide 44

Alternate Interfaces to Zoltan
• C++ and F90 interfaces in Zoltan.

• Isorropia package in Trilinos solver toolkit.
– Epetra Matrix interface to Zoltan partitioning.

• B = Isorropia::Epetra::create_balanced_copy(A, params);
– Trilinos v9 includes ordering and coloring interfaces in

Isorropia (in addition to partitioning).

• ITAPS iMesh interface to Zoltan.
– New iMeshP parallel mesh interface in progress.

Slide 45

Zoltan for CSC Developers
• Zoltan is an open-source project.

– We welcome contributions from the CSC
community!

– Data-neutral interface makes it easy to integrate
new packages as third-party libraries.

• Requirements for 3rd party software:
– Open source
– Written in C or C++
– Library interface

• Talk to us if you may be interested!

Slide 46

Current Work
•Two-dimensional matrix partitioning

– Fine-grain hypergraph method
• Catalyurek & Aykanat (2000)

– Nested dissection matrix partitioning
• Boman & Wolf (2008)

– Will require Isorropia (Trilinos).
•Multi-criteria hypergraph partitioning

– May be used for “checkerboard” matrix
partitioning.

•Non-symmetric matrix ordering
(HUND).

– For sparse LU factorization.

Slide 47

Future Zoltan extensions
• May add support for:

– Matching
• MatchBox (Dobrian)
• MatchBoxP (Halappanavar)

– More coloring
• ColPack (Gebremedhin)

Slide 48

 DEMO and
 HANDS ON!

Slide 49

Demo: Mesh partitioning
• For a demo, we’ll use the Zoltan test driver
(zdrive).

• Zdrive reads data from a file and outputs a
static partition.

– Visualize the result with gnuplot.
• Designed for testing, not for users!

– Code is ugly; do NOT use as example.
• Show mesh with different partitioning
algorithms.

– BLOCK, RCB, GRAPH, HYPERGRAPH

Slide 50

How to get Zoltan?

• A) Stand-alone:
– Download tarball from Zoltan home page.

• http://www.cs.sandia.gov/Zoltan

• B) As part of Trilinos:
– Download from Trilinos web site (~35 packages).

• http://trilinos.sandia.gov
– Best if you want to use other Trilinos packages.

• You should already have Zoltan!
– Just ‘cd zoltan’.

Slide 51

Configuring and Building Zoltan
• Create and enter the Zoltan directory.

– tar xfz zoltan_distrib_v3.1.tar.gz
– cd Zoltan

• Configure and make Zoltan library.
– Currently two build systems:

• Autotools (preferred)
• Manual (fallback option if above fails…)

– Create a build directory: mkdir BUILD
• Zoltan allows multiple builds from same source.

– cd BUILD; ../configure <options>
– Then just type ‘make’!

• make install

Slide 52

Example of configure script
../configure \
--prefix=/home/urmel/zoltan/BUILD \
--enable-mpi --with-mpi-compilers \
--with-parmetis \
--with-parmetis-incdir=“/home/urmel/ParMETIS3_1” \
--with-parmetis-libdir=“/home/urmel/ParMETIS3_1”

Tips:
• Remember to configure in your BUILD directory.
• Use --enable-mpi to build for parallel execution.
• Keep configure command in a script.
• See sample scripts in zoltan/SampleConfigureScripts.

Slide 53

How to run Zoltan?
• Recall Zoltan is “just” a library!

– Run your app and call Zoltan.
• There is no “Hello World” for Zoltan. 
• Fairly simple examples in zoltan/example.

– cd zoltan/example/C

Slide 54

SimpleRCB and SimpleGRAPH
• simpleRCB.c

– Example of RCB on 5x5 regular mesh.
– Objects to be partitioned are mesh nodes.

• simpleGRAPH.c
– Same example, but use graph model.

• Each program has 5 phases:
– Initialize.
– Set parameters and callbacks.
– Partition (call Zoltan).
– Use the partition (e.g. move data).
– Clean up.

Slide 55

simpleRCB.c: Initialization

 /* Initialize MPI */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
 MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

 /*
 ** Initialize application data. In this example,
 ** we split a 5*5 mesh among processors, see simpleGraph.h
 */

 /* Initialize Zoltan */
 rc = Zoltan_Initialize(argc, argv, &ver);

 if (rc != ZOLTAN_OK){
 printf("sorry...\n");
 MPI_Finalize();
 exit(0);
 }

Slide 56Example zoltanRCB.c:
Set Parameters and Callbacks

 /* Allocate and initialize memory for Zoltan structure */
 zz = Zoltan_Create(MPI_COMM_WORLD);

 /* Set general parameters */
 Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
 Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", “1");
 Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

 /* Set RCB parameters */
 Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
 Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
 Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

 /* Register call-back query functions
 (defined in simpleQueries.h). */
 Zoltan_Set_Num_Obj_Fn(zz, get_number_of_objects, NULL);
 Zoltan_Set_Obj_List_Fn(zz, get_object_list, NULL);
 Zoltan_Set_Num_Geom_Fn(zz, get_num_geometry, NULL);
 Zoltan_Set_Geom_Multi_Fn(zz, get_geometry_list, NULL);

Slide 57Example simpleRCB.c:
Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

 &changes, /* Flag indicating whether partition changed */
 &numGidEntries, &numLidEntries,

 &numImport, /* objects to be imported to new part */
 &importGlobalGids, &importLocalGids,
 &importProcs, &importToPart,

 &numExport, /* objects to be exported from old part */
 &exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

Slide 58Example simpleRCB.c:
Use the Partition

 /* Process partitioning results;
 ** in this case, just print information;
 ** in a "real" application, migrate data here.
 */
 draw_partitions("initial distribution", ngids, gid_list, 1,
wgt_list, 0);
 ...
 /* update gid_flags from import/export lists. */
 ...
 draw_partitions("new partitioning", nextIdx, gid_flags, 1,
wgt_list, 0);

Slide 59Example simpleRCB.c:
Cleanup

 /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
 Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
 &importProcs, &importToPart);
 Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

 /* Free Zoltan memory allocated by Zoltan_Create. */
 Zoltan_Destroy(&zz);

 /**********************
 ** all done ***********
 **********************/

 MPI_Finalize();

Slide 60

Compile and Run it!
• We could use autotooled makefiles.
• But let’s do it “from scratch.”

– mpicc simpleRCB.c –o simpleRCB
-I/home/urmel/zoltan/BUILD/include/
-L/home/urmel/zoltan/BUILD/lib –lzoltan
-L/home/urmel/ParMETIS3_1 -lparmetis
-lmetis

– mpirun –np 2 simpleRCB

Slide 61For geometric partitioning
(RCB, RIB, HSFC), use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 62Example simpleRCB.c:
ZOLTAN_NUM_OBJ_FN

/***
 * Prototype: ZOLTAN_NUM_OBJ_FN
 * Return the number of objects I own.

 * Zoltan partitions a collection of objects distributed
 * across processes. In this example objects are vertices.
 * They are dealt out like cards based on process rank.
 */
static int get_number_of_objects(void *data, int *ierr)
{
int i, numobj=0;

 for (i=0; i<simpleNumVertices; i++){
 if (i % numProcs == myRank) numobj++;
 }

 *ierr = ZOLTAN_OK;

 return numobj;
}

Slide 63Example simpleRCB.c:
ZOLTAN_OBJ_LIST_FN

void get_object_list(void *userData,
 int sizeGID, int sizeLID,
 ZOLTAN_ID_PTR globalID,
 ZOLTAN_ID_PTR localID,
 int wgt_dim, float *obj_wgts,
 int *err)
{
int i, next;
 if (sizeGID != 1){ /* My global IDs are 1 integer */
 *ierr = ZOLTAN_FATAL;
 return;
 }
 for (i=0, next=0; i<simpleNumVertices; i++){
 if (i % numProcs == myRank){
 globalID[next] = i+1; /* application wide global ID */
 localID[next] = next; /* process specific local ID */
 obj_wgts[next] = (float)simpleNumEdges[i]; /* weight */
 next++;
 }
 }
 *ierr = ZOLTAN_OK;
 return;
}

Slide 64Example simpleRCB.c:
ZOLTAN_GEOM_MULTI_FN

void get_geometry_list(void *data, int sizeGID, int sizeLID,
 int num_obj,
 ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
 int num_dim, double *geom_vec, int *ierr)
{
int i;
int row, col;

 for (i=0; i < num_obj ; i++){
 row = (globalID[i] - 1) / 5;
 col = (globalID[i] - 1) % 5;

 geom_vec[2*i] = (double)col;
 geom_vec[2*i+1] = (double)row;
 }

 *ierr = ZOLTAN_OK;
 return;
}

Slide 65

Example: simpleGRAPH.c
• Same example, but now use graph
partitioning.

• Changes needed:
– Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
– Set method-specific parameters (optional).
– Register graph call-back query functions.
– Everything else stays the same!

Slide 66For graph partitioning,
coloring & ordering, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 67

Changing Partitioner of Same Type
• By default, “GRAPH” uses Zoltan’s native
graph/hypergraph partitioner.

• To use ParMetis or Scotch:
– Zoltan_Set_Param(zz, “GRAPH_PACKAGE",

"PARMETIS");
– Zoltan_Set_Param(zz, “GRAPH_PACKAGE",

“SCOTCH");
– Define third-party libraries at configure time.

• Single parameter to switch partitioner.
– Try it!

Slide 68

For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Email:
– zoltan-users@software.sandia.gov
– {kddevin,ccheval,egboman}@sandia.gov
– umit@bmi.osu.edu

Slide 69

The End

Slide 70

More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g. Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)

Slide 71

Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.

Slide 72Using Zoltan’s
Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
 int num_import, ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids, int *import_procs,
 int *import_to_part,
 int num_export, ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids, int *export_procs,
 int *export_to_part);

Slide 73

Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse: Inverse communication.

• Used for most communication in Zoltan.
– Similar to BSP model.

Slide 74Example Application:
Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.

Slide 75

• Helps applications locate off-processor data.
– Zoltan does not keep track of user data.

• Rendezvous algorithm (Pinar, 2001).
– Directory distributed in known way (hashing) across

processors.
– Requests for object location

sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index 
 Location 

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

Slide 76For hypergraph partitioning
and repartitioning, use …

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 77Or can use graph queries
to build hypergraph.

List of graph edges and weights. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 78Variations on RCB :
Recursive Inertial Bisection

• Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
• Simon, Taylor, et al., 1991
• Cutting planes orthogonal to principle axes of

geometry.
• Not incremental.

Slide 79Space-Filling Curve
Partitioning (SFC)

• Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);
• Space-Filling Curve (Peano, 1890):

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
– Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
– Patra and Oden, 1995, adaptive mesh refinement.

Slide 80

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

SFC Algorithm
• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.

Slide 81SFC Advantages
and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in processors.
– All processors can inexpensively know entire partition (e.g., for

global search in contact detection).
– Implicitly incremental for repartitioning.

• Disadvantages:
– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.

Slide 82

hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

Applications using SFC
• Adaptive hp-refinement finite element methods.

– Assigns physically close elements to same processor.
– Inexpensive; incremental; fast.
– Linear ordering can be used

to order elements for
efficient memory access.

Slide 83Auxiliary Capabilities for
Geometric Methods

• Zoltan can store cuts from RCB, RIB, and HSFC
inexpensively in each processor.
– Zoltan_Set_Param(zz, “KEEP_CUTS”, “1”);

• Enables parallel geometric search without communication.
– Useful for contact detection, particle methods, rendering.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

*
Determine the part/processor

owning region with a given point.
Zoltan_LB_Point_PP_Assign

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Determine all parts/processors
overlapping a given region.
Zoltan_LB_Box_PP_Assign

Slide 84

Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
– Derivative matrix computation in numerical optimization
– Channel assignment
– Facility location

• Related problems
– Partial distance-2 coloring
– Star coloring

Slide 85

A

S
BA S B

Nested dissection (1) ‏
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.

Slide 86

Nested dissection (2) ‏
•Advantages:

– Induces high quality block decompositions.
• Suitable for block BLAS 3 computations.

– Increases the concurrency of
computations.

• Compared to minimum degree algorithms.
• Very suitable for parallel factorization.

– The ordering itself can be computed in
parallel.

Slide 87

Zoltan ordering architecture

Slide 88

Experimental results (1)
•Metric is OPC, the operation count of Cholesky
factorization.
•Largest matrix ordered by PT-Scotch: 83 millions of
unknowns on 256 processors (CEA/CESTA)‏.
•Some of our largest test graphs.

CEA/CESTA1.29E+147.61756862311423millions

Circuit simulation,
Quimonda8.92E+106.76291438613quimonda07

DNA electrophoresis, UF4.06E+1618.24470225154cage15

3D mechanics mesh,
Parasol5.48E+1281.2838354944audikw1

degree|E||V|
DescriptionOSS

AverageSize (x1000)
Graph

Slide 89

Experimental results (3)

17.8322.5640.30†117.77195.93tPM

380.69351.38340.78371.70427.38540.46tPTS

6.64E+167.03E+167.36E+16†6.64E+164.47E+16OPM

4.50E+164.58E+164.94E+164.64E+165.01E+164.58E+16OPTS

cage15

643216842case

Number of processesTest

Slide 90

Experimental results (4)
•ParMETIS crashes for all other graphs.

103.73147.35211.68295.38416.45671.60tPTS

2.45E+141.94E+142.71E+143.99E+142.91E+141.45E+14OPTS

23millions

16.6217.3022.2334.68--tPTS

7.70E+106.94E+106.38E+105.80E+10--OPTS

quimonda07

643216842case

Number of processesTest

Slide 91

Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_id = {A,C,B}
 local_id = {0,1,2}

Output from Application on Proc 0:
 num_edges = {2,4,3}
 (i.e., degrees of vertices A, C, B)
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

Slide 92

Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int *num_edges,
 ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
 int wdim, float *nbor_ewgts,
 int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_ids = {A, C, B}
 local_ids = {0, 1, 2}
 num_edges = {2, 4, 3}
 wdim = 0 or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc 0:
 nbor_global_id = {B, C, A, B, E, D, A, C, D}
 nbor_procs = {0, 0, 0, 0, 1, 1, 0, 0, 1}
 nbor_ewgts = if wdim then
 {7, 8, 8, 9, 1, 3, 7, 9, 5}
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2

Slide 93Example Hypergraph
Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
 int *format, int *ierr);

Output from Application on Proc 0:
 num_lists = 2
 num_pins = 6
 format = ZOLTAN_COMPRESSED_VERTEX
 (owned non-zeros per vertex)
 ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
 num_lists = 5
 num_pins = 6
 format = ZOLTAN_COMPRESSED_EDGE
 (owned non-zeros per edge)
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 94Example Hypergraph
Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
 int nvtxedge, int npins, int format,
 ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
 int *ierr);

Proc 0 Input from Zoltan:
 nvtxedge = 2 or 5
 npins = 6
 format = ZOLTAN_COMPRESSED_VERTEX or
 ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
 if (format = ZOLTAN_COMPRESSED_VERTEX)
 vtxedge_GID = {A, B}
 vtxedge_ptr = {0, 3}
 pin_GID = {a, e, f, b, d, f}
 if (format = ZOLTAN_COMPRESSED_EDGE)
 vtxedge_GID = {a, b, d, e, f}
 vtxedge_ptr = {0, 1, 2, 3, 4}
 pin_GID = {A, B, B, A, A, B}
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 95

Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, HSFC, graph and hypergraph
methods.

• Measure …
– Amount of communication induced by the partition.
– Partitioning time.

Slide 96

Test Data

SLAC *LCLS
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros

Slide 97Communication Volume:
Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts
= number of
processors.

RCB

Graph
Hypergraph

HSFC

Slide 98Partitioning Time:
Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB

Graph
Hypergraph

HSFC

Slide 99

Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

 Data redistribution volume
+ Application communication volume

 Total communication volume

Slide 100Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume

