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Outline
• High-level view of Zoltan
• Requirements, data models, and interface
• Partitioning and Dynamic Load Balancing
• Graph Coloring
• Matrix Ordering
• Alternate Interfaces
• Future Directions
• Demo
• Hands-On Examples
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The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Load 
Balancing

Distributed Data Directories
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• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring
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Zoltan System Assumptions
• Assume distributed memory model.
• Data decomposition + “Owner computes”:

– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by different

processors incur communication.

• Requirements:
– C compiler (C++ optional)
– GNU Make (gmake)
– MPI required for parallel execution
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Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers & 
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks
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Zoltan Interface Design
• Common interface to each class of tools.
• Tool/method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.
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Zoltan Interface
• Fairly simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to
be partitioned/ordered/colored. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)
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Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.
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(Re)partition
(Zoltan_LB_Partition)

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select Method and
Parameters

(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn) COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION
Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN
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Zoltan Query Functions

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Using Zoltan in Your Application
1. Download Zoltan.

 http://www.cs.sandia.gov/Zoltan
2. Build Zoltan library.
3. Decide what your objects are.

 Elements?  Grid points?  Matrix rows?  Particles?
4. Decide which tools (partitioning/ordering/coloring/utilities)

and class of method (geometric/graph/hypergraph) to use.
5. #include “zoltan.h” in files calling Zoltan.
6. Write required query functions for your application.

 Required functions are listed with each method in Zoltan
User’s Guide.

7. Call Zoltan from your application.
8. Compile application; link with libzoltan.a.

 mpicc application.c -lzoltan
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Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….
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Partitioning Interface

 Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)
Note that parts may differ from processors.

err = Zoltan_LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids, &importProcs, &importToPart,
&numExport, /* objects to be exported from old part */
&exportGlobalGids, &exportLocalGids, &exportProcs, &exportToPart);
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Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Largest processor time is minimized.
– Inter-processor communication costs are kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “PARTITION”);

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End
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(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Largest processor time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

• Zoltan_Set_Param(zz, “LB_APPROACH”, “REPARTITION”);
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Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.



Slide 17Partitioning Algorithms
in the Zoltan Toolkit

Recursive Coordinate Bisection 
Recursive Inertial Bisection 

Graph Partitioning 
ParMETIS  (Karypis et al.)

PT-Scotch (Pellegrini et al.)

Hypergraph Partitioning
Hypergraph Repartitioning 
PaToH (Catalyurek & Aykanat)

Geometric (coordinate-based) methods

Combinatorial (topology-based) methods

Space Filling Curve Partitioning
Refinement-tree Partitioning
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Geometric Partitioning
• Partition based on geometric locality of objects.

– Assign physically close objects to the same processor.
• Communication costs are controlled only implicitly.

– Assumption:  objects that depend on each other are physically
near each other.

– Reasonable assumption for particle simulations, contact
detection and some meshes.

Recursive Coordinate Bisection (RCB)
Berger & Bokhari, 1987

Recursive Inertial Bisection (RIB)
Simon, 1991; Taylor & Nour Omid, 1994 

Space Filling Curve Partitioning (HSFC)
Warren & Salmon, 1993; 

Pilkington & Baden, 1994; Patra & Oden, 1995
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1st cut

2nd

2nd

3rd

3rd3rd

3rd

Recursive Coordinate Bisection
• Zoltan_Set_Param(zz, “LB_METHOD”, “RCB”);
• Berger & Bokhari (1987).
• Idea:

– Divide work into two
equal parts using a
cutting plane
orthogonal to a
coordinate axis.

– Recursively cut the
resulting
subdomains.
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Geometric Repartitioning
• Implicitly achieves low data redistribution
costs.

• For small changes in data, cuts move only
slightly, resulting in little data redistribution.
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Applications of Geometric Methods

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations
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Advantages and Disadvantages

• Advantages:
– Conceptually simple; fast and inexpensive.
– All processors can inexpensively know entire partition (e.g.,

for global search in contact detection).
– No connectivity info needed (e.g., particle methods).
– Good on specialized geometries.

• Disadvantages:
– No explicit control of communication costs.
– Mediocre partition quality.
– Can generate disconnected subdomains for complex

geometries.
– Need coordinate information.

SLAC’S 55-cell Linear Accelerator with couplers:
One-dimensional RCB partition reduced runtime up
to 68% on 512 processor IBM SP3. (Wolf, Ko)
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Graph Partitioning

• Represent problem as a weighted graph.
– Vertices = objects to be partitioned.
– Edges = dependencies between two

objects.
– Weights = work load or amount of

dependency.
• Partition graph so that …

– Parts have equal vertex weight.
– Weight of edges cut by part boundaries is

small.

• Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
• Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “ZOLTAN”); or
   Zoltan_Set_Param(zz, “GRAPH_PACKAGE”, “PARMETIS”);

• Kernighan, Lin, Simon, Hendrickson, Leland, Kumar, Karypis, et al.
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Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
– Shift work from highly loaded

processors to less loaded neighbors.
– Local communication keeps data

redistribution costs low.

• Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)
– Parameter weights application communication vs.

redistribution communication.
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coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph



Slide 25Applications using Graph
Partitioning

x bA

=

Linear solvers & preconditioners
(square, structurally symmetric systems)

Finite Element 
Analysis

Multiphysics  and
multiphase simulations
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Advantages and Disadvantages

• Advantages:
– Highly successful model for mesh-based PDE problems.
– Explicit control of communication volume gives higher

partition quality than geometric methods.
– Excellent software available.

• Serial:  Chaco (SNL)
Jostle (U. Greenwich)
METIS (U. Minn.)
Scotch (U. Bordeaux)

• Parallel:  Zoltan (SNL)
ParMETIS (U. Minn.)
PJostle (U. Greenwich)
PT-Scotch (LaBRI/INRIA)

• Disadvantages:
– More expensive than geometric methods.
– Edge-cut model only approximates communication volume.
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A

Graph Partitioning Model

A

Hypergraph Partitioning Model

Hypergraph Partitioning
• Zoltan_Set_Param(zz, “LB_METHOD”, “HYPERGRAPH”);
• Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “ZOLTAN”); or

Zoltan_Set_Param(zz, “HYPERGRAPH_PACKAGE”, “PATOH”);

• Schweikert, Kernighan, Fiduccia, Mattheyes, Sanchis, Alpert, Kahng,
Hauck, Borriello, Çatalyürek, Aykanat, Karypis, et al.

• Hypergraph model:
– Vertices = objects to be partitioned.
– Hyperedges = dependencies between two or more objects.

• Partitioning goal: Assign equal vertex weight while minimizing
hyperedge cut weight.
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Best Algorithms Paper Award at IPDPS07
“Hypergraph-based Dynamic Load Balancing for Adaptive Scientific Computations”

Çatalyürek, Boman, Devine, Bozdag, Heaphy, & Riesen

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight dependencies by their size and frequency of use.

• Partitioning then tries to minimize total communication volume:
       Data redistribution volume
       + Application communication volume
          Total communication volume

• Data redistribution volume: callback returns data sizes.
– Zoltan_Set_Fn(zz, ZOLTAN_OBJ_SIZE_MULTI_FN_TYPE,

myObjSizeFn, 0);
• Application communication volume = Hyperedge cuts * Number

of times the communication is done between repartitionings.
– Zoltan_Set_Param(zz, “PHG_REPART_MULTIPLIER”, “100”);
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Hypergraph Applications

Circuit Simulations
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Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element 
Analysis

Multiphysics  and
multiphase simulations

Data Mining
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Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– Usually more expensive than graph partitioning.
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Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

• Zoltan_Set_Param(zz, “OBJ_WEIGHT_DIM”, “2”);
– Available in RCB, RIB and

ParMETIS graph partitioning.
– In progress in Hypergraph

partitioning.
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Heterogeneous Architectures
• Clusters may have different types of processors.
• Assign “capacity” weights to processors.

– E.g., Compute power (speed).
– Zoltan_LB_Set_Part_Sizes(…);

• Note:  Can use this function to specify part sizes for any purpose.
• Balance with respect to processor capacity.

• Hierarchical partitioning:  Allows different partitioners at
different architecture levels.

– Zoltan_Set_Param(zz, “LB_METHOD”, “HIER”);
– Requires three additional callbacks

to describe architecture hierarchy.
• ZOLTAN_HIER_NUM_LEVELS_FN
• ZOLTAN_HIER_PARTITION_FN
• ZOLTAN_HIER_METHOD_FN

Entire System

...Processor Processor

Core Core...Core Core...
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Graph Coloring
• Problem: Color the vertices of a graph with as few

colors as possible such that no two adjacent
vertices have the same color.

– Distance-2: No vertices connected by a length-2 path
have the same color

• Applications
– Iterative sparse solvers
– Preconditioners
– Automatic differentiation
– Sparse tiling
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Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph coloring.
• Graph built using same application interface and code

as graph partitioners.
• Generic coloring interface; easy to add new coloring

algorithms.
• Algorithms

– Distance-1 coloring: Bozdag, Gebremedhin, Manne,
Boman, Catalyurek, EuroPar’05, JPDC’08.

– Distance-2 coloring: Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, Ozguner, HPCC’05, SISC’09 (in
submission).
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Coloring Interface in Zoltan

• Both distance-1 and distance-2 coloring

routines are invoked by  the Zoltan_Color

function.

• Graph query functions required.

• The colors assigned to the objects are

returned in an array of integers.
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A Parallel Coloring Framework
• Color vertices iteratively in rounds using a first
fit strategy.

• Each round is broken into supersteps:
– Color a certain number of vertices.
– Exchange recent color information.

• Detect conflicts at the end of each round.
• Repeat until all vertices receive consistent
colors.
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Experimental Results
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Sparse Matrix Ordering Problem
• Work and fill in sparse direct solvers
(Cholesky, LU) depend on the matrix ordering.

– Optimal ordering is NP-hard.
– Many heuristics: Nested dissection, minimum

degree, etc.
– Nested dissection is preferred for parallel

processing.

A PAPTL L’
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Matrix ordering within Zoltan
• Computed by third party libraries:

– ParMETIS
– Scotch (actually PT-Scotch, the parallel part) ‏
– Easy to add another one.

• The calls to the external ordering library are
transparent for the user. Thus Zoltan’s API can
be a standard way to compute ordering.

• Native ordering in Zoltan planned.
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Ordering interface in Zoltan

•Compute ordering with one function:
Zoltan_Order

•Output provided:
–New order of the unknowns (direct

permutation), available in two forms:
• one is the new number in the interval [0,N-1];
• the other is the new order of Global IDs.

–Access to elimination tree, “block” view of
the ordering.
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Comparison PT-Scotch vs ParMetis

3.825.659.8017.1523.0932.69tPM

18.1624.7433.8345.1953.1973.11tPTS

1.07E+138.91E+128.88E+127.78E+126.37E+125.82E+12OPM

5.45E+125.45E+125.45E+125.54E+125.65E+125.73E+12OPTS

audikw1

643216842case

Number of processesTest
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Summary of Matrix Ordering
• Zoltan provides access to efficient parallel
ordering for sparse matrices. 

– PT-Scotch gives best quality (but longer time).
• Zoltan provides a standard way to call parallel
ordering.

• Zoltan will provide also its own ordering tool in
the future, for non-symmetric problems.

– HUND algorithm (talk by S. Donfack)
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Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Data Migration
– Unstructured Communication Primitives
– Distributed Data Directories

• All functionality described in Zoltan User’s Guide.
– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html



Slide 44

Alternate Interfaces to Zoltan
• C++ and F90 interfaces in Zoltan.

• Isorropia package in Trilinos solver toolkit.
– Epetra Matrix interface to Zoltan partitioning.

• B = Isorropia::Epetra::create_balanced_copy(A, params);
– Trilinos v9 includes ordering and coloring interfaces in

Isorropia (in addition to partitioning).

• ITAPS iMesh interface to Zoltan.
– New iMeshP parallel mesh interface in progress.
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Zoltan for CSC Developers
• Zoltan is an open-source project.

– We welcome contributions from the CSC
community!

– Data-neutral interface makes it easy to integrate
new packages as third-party libraries.

• Requirements for 3rd party software:
– Open source
– Written in C or C++
– Library interface

• Talk to us if you may be interested!
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Current Work
•Two-dimensional matrix partitioning

– Fine-grain hypergraph method
• Catalyurek & Aykanat (2000)

– Nested dissection matrix partitioning
• Boman & Wolf (2008)

– Will require Isorropia (Trilinos).
•Multi-criteria hypergraph partitioning

– May be used for “checkerboard” matrix
partitioning.

•Non-symmetric matrix ordering
(HUND).

– For sparse LU factorization.
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Future Zoltan extensions
• May add support for:

– Matching
• MatchBox (Dobrian)
• MatchBoxP (Halappanavar)

– More coloring
• ColPack (Gebremedhin)
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 DEMO and
 HANDS ON!
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Demo: Mesh partitioning
• For a demo, we’ll  use the Zoltan test driver
(zdrive).

• Zdrive reads data from a file and outputs a
static partition.

– Visualize the result with gnuplot.
• Designed for testing, not for users!

– Code is ugly; do NOT use as example.
• Show mesh with different partitioning
algorithms.

– BLOCK, RCB, GRAPH, HYPERGRAPH
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How to get Zoltan?

• A) Stand-alone:
– Download tarball from Zoltan home page.

• http://www.cs.sandia.gov/Zoltan

• B) As part of Trilinos:
– Download from Trilinos web site (~35 packages).

• http://trilinos.sandia.gov
– Best if you want to use other Trilinos packages.

• You should already have Zoltan!
– Just ‘cd zoltan’.
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Configuring and Building Zoltan
• Create and enter the Zoltan directory.

– tar xfz zoltan_distrib_v3.1.tar.gz
– cd Zoltan

• Configure and make Zoltan library.
– Currently two build systems:

• Autotools (preferred)
• Manual (fallback option if above fails…)

– Create a build directory: mkdir BUILD
• Zoltan allows multiple builds from same source.

– cd BUILD; ../configure <options>
– Then just type ‘make’!

• make install
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Example of configure script
../configure \
--prefix=/home/urmel/zoltan/BUILD \
--enable-mpi --with-mpi-compilers \
--with-parmetis \
--with-parmetis-incdir=“/home/urmel/ParMETIS3_1” \
--with-parmetis-libdir=“/home/urmel/ParMETIS3_1”

Tips:
• Remember to configure in your BUILD directory.
• Use --enable-mpi to build for parallel execution.
• Keep configure command in a script.
• See sample scripts in zoltan/SampleConfigureScripts.
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How to run Zoltan?
• Recall Zoltan is “just” a library!

– Run your app and call Zoltan.
• There is no “Hello World” for Zoltan. 
• Fairly simple examples in zoltan/example.

– cd zoltan/example/C
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SimpleRCB and SimpleGRAPH
• simpleRCB.c

– Example of RCB on 5x5 regular mesh.
– Objects to be partitioned are mesh nodes.

• simpleGRAPH.c
– Same example, but use graph model.

• Each program has 5 phases:
– Initialize.
– Set parameters and callbacks.
– Partition (call Zoltan).
– Use the partition (e.g. move data).
– Clean up.
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simpleRCB.c:  Initialization

  /* Initialize MPI */
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &myRank);
  MPI_Comm_size(MPI_COMM_WORLD, &numProcs);

  /*
  ** Initialize application data.  In this example,
  ** we split a 5*5 mesh among processors, see simpleGraph.h
  */

  /*  Initialize Zoltan */
  rc = Zoltan_Initialize(argc, argv, &ver);

  if (rc != ZOLTAN_OK){
    printf("sorry...\n");
    MPI_Finalize();
    exit(0);
  }
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Set Parameters and Callbacks

  /* Allocate and initialize memory for Zoltan structure */
  zz = Zoltan_Create(MPI_COMM_WORLD);

  /* Set general parameters */
  Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
  Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
  Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", “1");
  Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

  /* Set RCB parameters */
  Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
  Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
  Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

  /* Register call-back query functions
     (defined in simpleQueries.h). */
  Zoltan_Set_Num_Obj_Fn(zz, get_number_of_objects, NULL);
  Zoltan_Set_Obj_List_Fn(zz, get_object_list, NULL);
  Zoltan_Set_Num_Geom_Fn(zz, get_num_geometry, NULL);
  Zoltan_Set_Geom_Multi_Fn(zz, get_geometry_list, NULL);
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Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

         &changes, /* Flag indicating whether partition changed */
         &numGidEntries, &numLidEntries,

             &numImport, /* objects to be imported to new part */
         &importGlobalGids, &importLocalGids,
         &importProcs, &importToPart,

             &numExport, /* objects to be exported from old part */
          &exportGlobalGids, &exportLocalGids,
         &exportProcs, &exportToPart);
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Use the Partition

  /* Process partitioning results;
  ** in this case, just print information;
  ** in a "real" application, migrate data here.
  */
  draw_partitions("initial distribution", ngids, gid_list, 1,
wgt_list, 0);
   ...
  /* update gid_flags from import/export  lists. */
   ...
  draw_partitions("new partitioning", nextIdx, gid_flags, 1,
wgt_list, 0);
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Cleanup

  /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
  Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
                      &importProcs, &importToPart);
  Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
                      &exportProcs, &exportToPart);

  /* Free Zoltan memory allocated by Zoltan_Create. */
  Zoltan_Destroy(&zz);

  /**********************
  ** all done ***********
  **********************/

  MPI_Finalize();
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Compile and Run it!
• We could use autotooled makefiles.
• But let’s do it “from scratch.”

– mpicc simpleRCB.c –o simpleRCB
-I/home/urmel/zoltan/BUILD/include/
-L/home/urmel/zoltan/BUILD/lib –lzoltan
-L/home/urmel/ParMETIS3_1 -lparmetis
-lmetis

– mpirun –np 2 simpleRCB



Slide 61For geometric partitioning
(RCB, RIB, HSFC), use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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ZOLTAN_NUM_OBJ_FN

/*****************************************************
 * Prototype: ZOLTAN_NUM_OBJ_FN
 * Return the number of objects I own.
 *******************************************************
 * Zoltan partitions a collection of objects distributed
 * across processes. In this example objects are vertices.
 * They are dealt out like cards based on process rank.
 */
static int get_number_of_objects(void *data, int *ierr)
{
int i, numobj=0;

  for (i=0; i<simpleNumVertices; i++){
    if (i % numProcs == myRank) numobj++;
  }

  *ierr = ZOLTAN_OK;

  return numobj;
}
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ZOLTAN_OBJ_LIST_FN

void get_object_list(void *userData,
                     int sizeGID, int sizeLID,
                     ZOLTAN_ID_PTR globalID,
                     ZOLTAN_ID_PTR localID,
                     int wgt_dim, float *obj_wgts,
                     int *err)
{
int i, next;
 if (sizeGID != 1){  /* My global IDs are 1 integer */
    *ierr = ZOLTAN_FATAL;
    return;
  }
  for (i=0, next=0; i<simpleNumVertices; i++){
    if (i % numProcs == myRank){
      globalID[next] = i+1;   /* application wide global ID */
      localID[next] = next;   /* process specific local ID  */
      obj_wgts[next] = (float)simpleNumEdges[i];  /* weight */
      next++;
    }
  }
  *ierr = ZOLTAN_OK;
  return;
}



Slide 64Example simpleRCB.c:
ZOLTAN_GEOM_MULTI_FN

void get_geometry_list(void *data, int sizeGID, int sizeLID,
                      int num_obj,
             ZOLTAN_ID_PTR globalID, ZOLTAN_ID_PTR localID,
             int num_dim, double *geom_vec, int *ierr)
{
int i;
int row, col;

  for (i=0;  i < num_obj ; i++){
    row = (globalID[i] - 1) / 5;
    col = (globalID[i] - 1) % 5;

    geom_vec[2*i] = (double)col;
    geom_vec[2*i+1] = (double)row;
  }

    *ierr = ZOLTAN_OK;
  return;
}
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Example: simpleGRAPH.c
• Same example, but now use graph
partitioning.

• Changes needed:
– Zoltan_Set_Param(zz, “LB_METHOD”, “GRAPH”);
– Set method-specific parameters (optional).
– Register graph call-back query functions.
– Everything else stays the same!
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coloring & ordering, use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Changing Partitioner of Same Type
• By default, “GRAPH” uses Zoltan’s native
graph/hypergraph partitioner.

• To use ParMetis or Scotch:
– Zoltan_Set_Param(zz, “GRAPH_PACKAGE",

"PARMETIS");
– Zoltan_Set_Param(zz, “GRAPH_PACKAGE",

“SCOTCH");
– Define third-party libraries at configure time.

• Single parameter to switch partitioner.
– Try it!
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For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Email:
– zoltan-users@software.sandia.gov
– {kddevin,ccheval,egboman}@sandia.gov
– umit@bmi.osu.edu
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The End
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More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g.  Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
                       int numGlobalIds, int numLocalIds, int numObjs,
                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                       int numDim, double *pts, int *err)
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Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.
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Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
       int num_import, ZOLTAN_ID_PTR import_global_ids,
       ZOLTAN_ID_PTR import_local_ids, int *import_procs,
       int *import_to_part,
       int num_export, ZOLTAN_ID_PTR export_global_ids,
       ZOLTAN_ID_PTR export_local_ids, int *export_procs,
       int *export_to_part);
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Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse:  Inverse communication.

• Used for most communication in Zoltan.
– Similar to BSP model.
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Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.



Slide 75

• Helps applications locate off-processor data.
– Zoltan does not keep track of user data.

• Rendezvous algorithm (Pinar, 2001).
– Directory distributed in known way (hashing) across

processors.
– Requests for object location

sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory  Index  
                   Location  

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2
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and repartitioning, use …

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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to build hypergraph.

List of graph edges and weights.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Recursive Inertial Bisection

• Zoltan_Set_Param(zz, “LB_METHOD”, “RIB”);
• Simon, Taylor, et al., 1991
• Cutting planes orthogonal to principle axes of

geometry.
• Not incremental.
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Partitioning (SFC)

• Zoltan_Set_Param(zz, “LB_METHOD”, “HSFC”);
• Space-Filling Curve (Peano, 1890):

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
– Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
– Patra and Oden, 1995, adaptive mesh refinement.
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SFC Algorithm
• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.
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and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in processors.
– All processors can inexpensively know entire partition (e.g., for

global search in contact detection).
– Implicitly incremental for repartitioning.

• Disadvantages:
– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.
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hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

Applications using SFC
• Adaptive hp-refinement finite element methods.

– Assigns physically close elements to same processor.
– Inexpensive; incremental; fast.
– Linear ordering can be used

to order elements for
efficient memory access.
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Geometric Methods

• Zoltan can store cuts from RCB, RIB, and HSFC
inexpensively in each processor.
– Zoltan_Set_Param(zz, “KEEP_CUTS”, “1”);

• Enables parallel geometric search without communication.
– Useful for contact detection, particle methods, rendering.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

*
Determine the part/processor 

owning region with a given point.
Zoltan_LB_Point_PP_Assign

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Determine all parts/processors 
overlapping a given region.
Zoltan_LB_Box_PP_Assign
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Distance-2 Graph Coloring
• Problem (NP-hard)

Color the vertices of a graph with as few colors as possible
such that a pair of vertices connected by a path on two or
less edges receives different colors.

• Applications
– Derivative matrix computation in numerical optimization
– Channel assignment
– Facility location

• Related problems
– Partial distance-2 coloring
– Star coloring
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A

S
BA S B

Nested dissection (1) ‏
• Principle [George 1973]

– Find a vertex separator S in graph.
– Order vertices of S with highest available indices.
– Recursively apply the algorithm to the two

separated subgraphs A and B.
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Nested dissection (2) ‏
•Advantages:

– Induces high quality block decompositions.
• Suitable for block BLAS 3 computations.

– Increases the concurrency of
computations.

• Compared to minimum degree algorithms.
• Very suitable for parallel factorization.

– The ordering itself can be computed in
parallel.
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Zoltan ordering architecture
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Experimental results (1)
•Metric is OPC, the operation count of Cholesky
factorization.
•Largest matrix ordered by PT-Scotch: 83 millions of
unknowns on 256 processors (CEA/CESTA)‏.
•Some of our largest test graphs.

CEA/CESTA1.29E+147.61756862311423millions

Circuit simulation,
Quimonda8.92E+106.76291438613quimonda07

DNA electrophoresis, UF4.06E+1618.24470225154cage15

3D mechanics mesh,
Parasol5.48E+1281.2838354944audikw1

degree|E||V|
DescriptionOSS

AverageSize (x1000)
Graph
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Experimental results (3)

17.8322.5640.30†117.77195.93tPM

380.69351.38340.78371.70427.38540.46tPTS

6.64E+167.03E+167.36E+16†6.64E+164.47E+16OPM

4.50E+164.58E+164.94E+164.64E+165.01E+164.58E+16OPTS

cage15

643216842case

Number of processesTest
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Experimental results (4)
•ParMETIS crashes for all other graphs.

103.73147.35211.68295.38416.45671.60tPTS

2.45E+141.94E+142.71E+143.99E+142.91E+141.45E+14OPTS

23millions

16.6217.3022.2334.68--tPTS

7.70E+106.94E+106.38E+105.80E+10--OPTS

quimonda07

643216842case

Number of processesTest
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Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
  int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_id = {A,C,B}
  local_id  = {0,1,2}

Output from Application on Proc 0:
  num_edges = {2,4,3}
              (i.e., degrees of vertices A, C, B)
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1
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Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
  int *num_edges,
  ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
  int wdim, float *nbor_ewgts,
  int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_ids = {A, C, B}
  local_ids  = {0, 1, 2}
  num_edges  = {2, 4, 3}
  wdim = 0 or EDGE_WEIGHT_DIM parameter value 

Output from Application on Proc 0:
  nbor_global_id = {B, C, A, B, E, D, A, C, D}
  nbor_procs     = {0, 0, 0, 0, 1, 1, 0, 0, 1}
  nbor_ewgts   = if wdim then
                   {7, 8, 8, 9, 1, 3, 7, 9, 5}
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2
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Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
  int *format, int *ierr);

Output from Application on Proc 0:
  num_lists = 2
  num_pins = 6
  format = ZOLTAN_COMPRESSED_VERTEX
           (owned non-zeros per vertex)
  ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
  num_lists = 5
  num_pins = 6
  format = ZOLTAN_COMPRESSED_EDGE
           (owned non-zeros per edge)
  ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s
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Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
  int nvtxedge, int npins, int format,
  ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
  int *ierr);

Proc 0 Input from Zoltan:
  nvtxedge = 2 or 5
  npins = 6
  format = ZOLTAN_COMPRESSED_VERTEX or
           ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
  if (format = ZOLTAN_COMPRESSED_VERTEX)
      vtxedge_GID = {A, B}
      vtxedge_ptr = {0, 3}
      pin_GID = {a, e, f, b, d, f}
  if (format = ZOLTAN_COMPRESSED_EDGE)
      vtxedge_GID = {a, b, d, e, f}
      vtxedge_ptr = {0, 1, 2, 3, 4}
      pin_GID = {A, B, B, A, A, B}
  ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX
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Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, HSFC, graph and hypergraph
methods.

• Measure …
– Amount of communication induced by the partition.
– Partitioning time.
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Test Data

SLAC *LCLS 
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros 

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros 
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Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts 
= number of 
processors.

RCB

Graph
Hypergraph

HSFC
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Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB

Graph
Hypergraph

HSFC
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Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

   Data redistribution volume
+ Application communication volume

      Total communication volume



Slide 100Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume


