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Outline
Part 1:
• Partitioning and load balancing

– “Owner computes” approach
• Static vs. dynamic partitioning
• Models and algorithms

– Geometric (RCB, SFC)
– Graph & hypergraph

Part 2:
• Zoltan

– Capabilities
– How to get it, configure, build
– How to use Zoltan with your application
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 Parallel Computing in CS&E
• Parallel Computing Challenge

– Scientific simulations critical to modern science.
• Models grow in size, higher fidelity/resolution.
• Simulations must be done on parallel computers.

– Clusters with 64-256 nodes are widely available.
– High-performance computers have 100,000+

processors.
• How can we use such machines efficiently?
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Parallel Computing Approaches
• We focus on distributed memory systems.

– Two common approaches:
• Master–slave

– A “master” processor is a global synchronization
point, hands out work to the slaves.

• Data decomposition + “Owner computes”:
– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by

different processors incur communication.
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Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….
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Partitioning Goals
• Minimize total execution time by…

– Minimizing processor idle time.
• Load balance data and work.

– Keeping inter-processor communication low.
• Reduce total volume, max volume.
• Reduce number of messages.

Partition of an unstructured 

finite element mesh 
for three processors



Slide 7

“Simple” Example (1)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

7x5 grid
5-point stencil
4 processors
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“Simple” Example (2)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 14
Total Volume: 42
Max Nbor Proc: 2
Max Imbalance: 3%
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First 35/4 points to processor 0; 
next 35/4 points to processor 1; etc.
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“Simple” Example (3)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 10
Total Volume: 30
Max Nbor Proc: 2
Max Imbalance: 14% One-dimensional striped partition
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“Simple” Example (4)

• Finite difference method.
– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 7
Total Volume: 26
Max Nbor Proc: 2
Max Imbalance: 37% Two-dimensional 

structured grid partition
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Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End
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Dynamic Applications
• Characteristics:

– Work per processor is unpredictable or changes during
a computation; and/or

– Locality of objects changes during computations.
– Dynamic redistribution of work is needed during

computation.

• Example:
adaptive
mesh
refinement
(AMR)
methods
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(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.
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Usage and Implementation

• Static:
– Pre-processor to

application.
– Can be implemented

serially.
– May be slow, expensive.
– File-based interface

acceptable.
– No consideration of

existing decomposition
required.

• Dynamic:
– Must run side-by-side

with application.
– Must be implemented in

parallel.
– Must be fast, scalable.
– Library application

interface required.
– Should be easy to use.
– Incremental algorithms

preferred.
• Small changes in input

result small changes in
partitions.

• Explicit or implicit
incrementality
acceptable.
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Two Types of Models/Algorithms
• Geometric

– Computations are tied to a geometric domain.
– Coordinates for data items are available.
– Geometric locality is loosely correlated to data

dependencies.
• Combinatorial (topological)

– No geometry .
– Connectivity among data items is known.

• Represent as graph or hypergraph.
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• Developed by Berger & Bokhari (1987) for AMR.
– Independently discovered by others.

• Idea:
– Divide work into two equal parts

using a cutting plane orthogonal
to a coordinate axis.

– Recursively cut the
resulting subdomains.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Recursive Coordinate
Geometric Bisection (RCB)
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• Implicitly incremental.
• Small changes in data results in small movement of

cuts.

RCB Repartitioning
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and Disadvantages

• Advantages:
– Conceptually simple; fast and inexpensive.
– Regular subdomains.

• Can be used for structured or unstructured applications.
• All processors can inexpensively know entire decomposition.

– Effective when connectivity info is not available.
• Disadvantages:

– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Mediocre partition quality.
– Geometric coordinates needed.
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Applications of RCB

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

1.6 ms

3.2 ms
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Variations on RCB : RIB
• Recursive Inertial Bisection

– Simon, Taylor, et al., 1991
– Cutting planes orthogonal to principle axes of geometry.
– Not incremental.
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Partitioning (SFC)

• Developed by Peano, 1890.
• Space-Filling Curve:

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
– Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
– Patra and Oden, 1995, adaptive mesh refinement.
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SFC Algorithm
• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.
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SFC Repartitioning

• Implicitly incremental.
• Small changes in data results in small
movement of cuts in linear ordering.
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and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in

processors.
– Linear ordering of objects may improve cache

performance.
• Disadvantages:

– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.



Slide 25

hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

Applications using SFC
• Adaptive hp-refinement finite element methods.

– Assigns physically close elements to same processor.
– Inexpensive; incremental; fast.
– Linear ordering can be used

to order elements for
efficient memory access.
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Graph Partitioning
• Represent problem as a weighted

graph.
– Vertices = objects to be partitioned.
– Edges = communication between

objects.
– Weights = work load or amount of

communication.

• Partition graph so that …
– Partitions have equal vertex weight.
– Weight of edges cut by subdomain

boundaries is small.
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Partition

Multi-Level Graph Partitioning
• Bui & Jones (1993); Hendrickson & Leland
(1993); Karypis and Kumar (1995)

• Construct smaller approximations to graph.
• Perform graph partitioning on coarse graph.
• Propagate partition back, refining as needed.
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Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
– Shift work from highly loaded

processors to less loaded neighbors.
– Local communication keeps data

redistribution costs low.

• Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)
– Parameter weights application communication vs.

redistribution communication.

10
1010
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30
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20

20
20
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Partition

coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph
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Advantages and Disadvantages

• Advantages:
– High quality partitions for many applications.
– Explicit control of communication costs.
– Widely used for static partitioning (Chaco, METIS,

Jostle, Party, Scotch)
• Disadvantages:

– More expensive than
geometric approaches.

– Not incremental.
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Partitioning

• Finite element analysis
• Multiphysics simulations

– Difficult to estimate work in advance.
– Rebalance infrequently; want high

quality.
• Linear solvers and preconditioners

– Square, structurally symmetric.
– Decomposition of mesh induces good

decomposition for solver.
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Partitioning

• XYCE (S. Hutchinson, R. Hoekstra, E. Keiter, SNL)
– Massively parallel analog circuit simulator.

• Load balancing in XYCE.
– Balance linear solve phase.
– Equal number of rows while

minimizing cut edges.
– Partition matrix solver separately

from matrix fill.
– Trilinos solver library (Heroux, et al.)

uses Zoltan to partition matrix.

• Matrix structure more complex than mesh-based
applications.

– Is there a better partitioning model?
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A

Flaws in the Graph Model
• Graph model and partitioning

approach has been successful in
scientific computing, BUT…

• Graph models assume # edge cuts
= communication volume.

• In reality…
– Edge cuts are not equal to

communication volume.
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• Graph models assume symmetric square problem.
– Symmetric == undirected graph.
– Square == inputs and outputs of operation are same size.

• Non-symmetric systems.
– Require directed or bipartite graph.

• Rectangular systems.
– Require decompositions for

differently sized inputs and outputs.

xy A

=

xy A

=

Graph Models: Applicability
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Is the Graph Model “good enough”?
• Mesh-based applications: Yes, maybe.

– Graph partitioning works well in practice.
– Geometric structure of meshes ensures…

• Small separators and good partitions.
• Low vertex degrees give small error in graph model.

• Irregular non-mesh applications: No.
– Graph model is poor or does not apply.
– Ex: circuit simulation, discrete optimization, data

mining.
– Nonsymmetric and rectangular matrices.
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Hypergraph Partitioning

• Hypergraph model (Aykanat & Catalyurek)
– Vertices represent computations.
– Hyperedges connect all objects which produce/use datum.

• Hyperedges connect one or more vertices (cf. graph edge always
two)

– Greater expressiveness than graph partitioners.
• Non-symmetric data dependencies.
• Rectangular matrices.

– Cut hyperedges == communication volume!

A

Graph model only approximates 
communication volume.

A

Hypergraph model accurately 
measures communication volume.
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Matrices and Hypergraphs
• View matrix as hypergraph (Çatalyürek & Aykanat)

– Vertices == columns
– Edges == rows

• Partition vertices (columns in matrix)
• Communication volume associated with edge e:

 CVe = (# processors in edge e) - 1

• Total communication volume =

x

x**y

x****y

x***=y

x**y

x***y

!
e

e
CV
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Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight hyperedges by data redistribution size or frequency of

use.
• Hypergraph partitioning then attempts to minimize total

communication volume:
      Data redistribution volume

+ Application communication volume
   Total communication volume

• Trade-off between application volume and redistribution cost
controlled by single knob (user parameter).

– PHG_REPART_MULTIPLIER should be (roughly) number of
application communications between repartitions.

• Can re-use existing algorithms and software.
– This approach also works for graphs.
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Hypergraph Applications

Circuit Simulations
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Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element 
Analysis

Multiphysics  and
multiphase simulations

Data Mining
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Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– More expensive than graph partitioning.
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Using Weights
• Some data items may have more work than
others.

• Solution: Specify work (load) using weights.
– By default, all data items have unit weights.
– Objective is to balance sum of weights.

• Geometric methods:
– Add a weight for each point.

• Graph/hypergraph methods:
– One weight per vertex.
– Can also weight edges with communication size.
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Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.
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Heterogeneous Architectures
• Clusters may have different types of
processors.

• Assign “capacity” weights to processors.
– Compute power (speed)
– Memory

• Partitioner should balance with respect to
processor capacity.
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 Example & Recap
• Hammond airfoil mesh
• 2d mesh, triangular elements

– 5K vertices
– 13K edges

• Partition into 8 parts
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RCB

Total
Volume:

826

Max #mesg:
6
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RIB

Total volume:

922

Max #mesg: 5
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HSFC

Total volume:

1000

Max #mesg:

6
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Graph

Total volume:

472

Max #mesg: 5
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Hypergraph

Total volume:

464

Max #mesg: 6
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Coffee Break!
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Software
• Geometric partitioners

– Often embedded in application code;
• Cannot easily be re-used.

• Graph/hypergraph partitioners
– Multilevel partitioners are so complex they can take

several man-years to implement.
– Abstraction allows partitioners to be used across

many applications.
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Software
• 1990s: Many graph partitioners

– Chaco (Sandia)
– Metis/ParMetis (U. Minnesota)
– Jostle/PJostle (U. Greenwich)
– Scotch (U. Bordeaux)
– Party (U. Paderborn)

• Great advance at the time, but…
– Single algorithm is not best for all applications.
– Interface requires application to build specific

graph data structure.
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Our Approach:  Zoltan Toolkit

• Construct applications from smaller software “parts.”
• “Tinker-toy parallel computing” -- B. Hendrickson
• Toolkits include …

– Services applications commonly need.
– Support for wide range of applications.
– Easy-to-use interfaces.
– Data-structure neutral design.

• Toolkits avoid …
– Prescribed data structures
– Heavy framework
– Limited freedom for application developers.

• Zoltan:  Toolkit of Parallel Data
Management Tools for Parallel,
Unstructured Applications.

Hasbro, Inc.
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The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Memory 
Debugging



Dynamic Load 
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring
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Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers & 
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks
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Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.
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Suite of Partitioners

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Space Filling Curves (Peano, Hilbert)
Refinement-tree Partitioning (Mitchell)

Graph Partitioning
ParMETIS  (Karypis, Schloegel, Kumar)
Jostle (Walshaw)

Hypergraph Partitioning & Repartitioning
(Catalyurek, Aykanat, Boman, Devine,

Heaphy, Karypis, Bisseling)
PaToH (Catalyurek)
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Zoltan Interface Design
• Common interface to each class of partitioners.
• Partitioning method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.
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Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to be
partitioned. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)
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Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.
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Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select LB Method
(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

Re-partition
(Zoltan_LB_Partition)

COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN
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Zoltan Query Functions

List of graph edges.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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(RCB, RIB, HSFC), use …

List of graph edges.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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coloring & ordering, use …

List of graph edges.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions



Slide 64For hypergraph partitioning
and repartitioning, use …

List of graph edges.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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to build hypergraph.

List of graph edges.  ZOLTAN_EDGE_LIST_FN

Number of graph edges.  ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights.  ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights.  ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins.  ZOLTAN_HG_CS_FN

Number of hyperedge pins.  ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items.  ZOLTAN_GEOM_FN

Dimensionality of domain.  ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights.  ZOLTAN_OBJ_LIST_FN

Number of items on processor  ZOLTAN_NUM_OBJ_FN

General Query Functions
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Using Zoltan in Your Application

1. Decide what your objects are.
 Elements?  Grid points?  Matrix rows?  Particles?

2. Decide which class of method to use
(geometric/graph/hypergraph).

3. Download and build Zoltan.
4. Write required query functions for your application.

 Required functions are listed with each method in Zoltan
User’s Guide.

5. Call Zoltan from your application.
6. #include “zoltan.h” in files calling Zoltan.
7. Compile; link application with libzoltan.a.

 mpicc application.c -lzoltan
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Typical Applications
• Unstructured meshes:

– Nodes, edges, and faces all need be distributed.
– Several choices:

• Nodes are Zoltan objects (primal graph)
• Faces are Zoltan objects (dual graph)

• Sparse matrices:
– Partition rows or columns?
– Balance rows or nonzeros?

• Particle methods:
– Partition particles or cells weighted by particles?
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Zoltan: Getting Started
• Requirements:

– C compiler
– GNU Make (gmake)
– MPI library (Message Passing Interface)

• Download Zoltan from Zoltan web site
– http://www.cs.sandia.gov/Zoltan
– Select “Download Zoltan” button.
– Submit the registration form.
– Choose the version you want;

we suggest the latest version v3.0!
– Downloaded file is zoltan_distrib_v3.0.tar.gz.
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Configuring and Building Zoltan
• Create and enter the Zoltan directory:

– gunzip zoltan_distrib_v3.0.tar.gz
– tar xf zoltan_distrib_v3.0.tar
– cd Zoltan

• Configure and make Zoltan library
– Not autotooled; uses manual configuration file.
– “make zoltan” attempts a generic build;

library libzoltan.a is in directory Obj_generic.
– To customize your build:

• cd Utilities/Config; cp Config.linux Config.your_system
• Edit Config.your_system
• cd ../..
• setenv ZOLTAN_ARCH your_system
• make zoltan
• Library libzoltan.a is in Obj_your_system
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Config file
DEFS                    =
RANLIB                  = ranlib
AR                      = ar r

CC                      = mpicc -Wall
CPPC                    = mpic++
INCLUDE_PATH            =
DBG_FLAGS               = -g
OPT_FLAGS               = -O
CFLAGS                  = $(DBG_FLAGS)

F90                     = mpif90
LOCAL_F90               = f90
F90CFLAGS               = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS                  =
SPPR_HEAD               = spprinc.most
F90_MODULE_PREFIX       = -I
FARG                    = farg_typical

MPI_LIB                 =
MPI_LIBPATH             =

PARMETIS_LIBPATH        = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH        = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH           = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH           = -I/Users/kddevin/code/PaToH
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Simple Example
• Zoltan/examples/C/zoltanSimple.c
• Application data structure:

– int MyNumPts;
• Number of points on processor.

– int *Gids;
• array of Global ID numbers of points on processor.

– float *Pts;
• Array of 3D coordinates of points on processor (in same

order as Gids array).
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Initialization

  /* Initialize MPI */
  MPI_Init(&argc, &argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &me);
  MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

  /*
  ** Initialize application data.  In this example,
  ** create a small test mesh and divide it across processors
  */

  exSetDivisions(32);    /* rectilinear mesh is div X div X div */

  MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

  /*  Initialize Zoltan */
  rc = Zoltan_Initialize(argc, argv, &ver);

  if (rc != ZOLTAN_OK){
    printf("sorry...\n");
    free(Pts); free(Gids);
    exit(0);
  }



Slide 73Example zoltanSimple.c:
Prepare for Partitioning

  /* Allocate and initialize memory for Zoltan structure */
  zz = Zoltan_Create(MPI_COMM_WORLD);

  /* Set general parameters */
  Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
  Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
  Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
  Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

  /* Set RCB parameters */
  Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
  Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
  Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

  /* Register call-back query functions. */
  Zoltan_Set_Num_Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
  Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
  Zoltan_Set_Num_Geom_Fn(zz, exGetObjectSize, NULL);
  Zoltan_Set_Geom_Multi_Fn(zz, exGetObject, NULL);
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Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

         &changes, /* Flag indicating whether partition changed */
         &numGidEntries, &numLidEntries,

             &numImport, /* objects to be imported to new part */
         &importGlobalGids, &importLocalGids,
         &importProcs, &importToPart,

             &numExport, /* # objects to be exported from old part */
          &exportGlobalGids, &exportLocalGids,
         &exportProcs, &exportToPart);
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Use the Partition

  /* Process partitioning results;
  ** in this case, print information;
  ** in a "real" application, migrate data here.
  */
  if (!rc){
    exPrintGlobalResult("Recursive Coordinate Bisection",
                         nprocs, me,
                         MyNumPts, numImport, numExport, changes);
  }
  else{
    free(Pts);
    free(Gids);
    Zoltan_Destroy(&zz);
    MPI_Finalize();
    exit(0);
  }
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Cleanup

  /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
  Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
                      &importProcs, &importToPart);
  Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
                      &exportProcs, &exportToPart);

  /* Free Zoltan memory allocated by Zoltan_Create. */
  Zoltan_Destroy(&zz);

  /* Free Application memory */
  free(Pts); free(Gids);

  /**********************
  ** all done ***********
  **********************/

  MPI_Finalize();
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ZOLTAN_OBJ_LIST_FN

void exGetObjectList(void *userDefinedData,
                     int numGlobalIds, int numLocalIds,
                     ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                     int wgt_dim, float *obj_wgts,
                     int *err)
{
/* ZOLTAN_OBJ_LIST_FN callback function.
** Returns list of objects owned by this processor.
** lids[i] = local index of object in array.
*/
  int i;

  for (i=0; i<NumPoints; i++)
    {
    gids[i] = GlobalIds[i];
    lids[i] = i;
    }

  *err = 0;

  return;
}
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ZOLTAN_GEOM_MULTI_FN

void exGetObjectCoords(void *userDefinedData,
                       int numGlobalIds, int numLocalIds, int numObjs,
                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                       int numDim, double *pts, int *err)
{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
  int i, id, id3, next = 0;
  if (numDim != 3) {
    *err = 1; return;
  }
  for (i=0; i<numObjs; i++){
    id = lids[i];
    if ((id < 0) || (id >= NumPoints)) {
      *err = 1; return;
    }
    id3 = lids[i] * 3;
    pts[next++] = (double)(Points[id3]);
    pts[next++] = (double)(Points[id3 + 1]);
    pts[next++] = (double)(Points[id3 + 2]);
  }
}
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Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
  int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_id = {A,C,B}
  local_id  = {0,1,2}

Output from Application on Proc 0:
  num_edges = {2,4,3}
              (i.e., degrees of vertices A, C, B)
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1



Slide 80

Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
  int num_gid_entries, int num_lid_entries,
  int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
  int *num_edges,
  ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
  int wdim, float *nbor_ewgts,
  int *ierr);

Proc 0 Input from Zoltan:
    num_obj = 3
  global_ids = {A, C, B}
  local_ids  = {0, 1, 2}
  num_edges  = {2, 4, 3}
  wdim = 0 or EDGE_WEIGHT_DIM parameter value 

Output from Application on Proc 0:
  nbor_global_id = {B, C, A, B, E, D, A, C, D}
  nbor_procs     = {0, 0, 0, 0, 1, 1, 0, 0, 1}
  nbor_ewgts   = if wdim then
                   {7, 8, 8, 9, 1, 3, 7, 9, 5}
  ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2
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More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g.  Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
                       int numGlobalIds, int numLocalIds, int numObjs,
                       ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
                       int numDim, double *pts, int *err)
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Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.
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Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
       int num_import, ZOLTAN_ID_PTR import_global_ids,
       ZOLTAN_ID_PTR import_local_ids, int *import_procs,
       int *import_to_part,
       int num_export, ZOLTAN_ID_PTR export_global_ids,
       ZOLTAN_ID_PTR export_local_ids, int *export_procs,
       int *export_to_part);
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Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Unstructured Communication Primitives
– Distributed Data Directories

• Tools closely related to graph partitioning:
– Graph coloring
– Matrix ordering
– These tools use the same query functions as graph

partitioners.
• All functionality described in Zoltan User’s Guide.

– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html
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Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse:  Inverse communication.

• Used for most communication in Zoltan.
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Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.
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• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory  Index  
                   Location  

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2
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Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph

coloring.
• Graph built using same application interface

and code as graph partitioners.
• Generic coloring interface; easy to add new

coloring algorithms.
• Implemented algorithms due to

Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, 2005.
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Zoltan Matrix Ordering Interface

• Produce fill-reducing ordering for sparse matrix
factorization.

• Graph built using same application interface and
code as graph partitioners.

• Generic ordering interface; easy to add new
ordering algorithms.

• Specific interface to ordering
methods in ParMETIS (Karypis,
et al., U. Minnesota).
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Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, graph and hypergraph methods.
• Measure …

– Amount of communication induced by the partition.
– Partitioning time.
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Test Data

SLAC *LCLS 
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros 

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros 
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Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts 
= number of 
processors.

RCB
Graph
Hypergraph
HSFC
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Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB
Graph
Hypergraph
HSFC
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Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

   Data redistribution volume
+ Application communication volume

      Total communication volume
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Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume
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Summary
• No one-size-fits-all solutions for partitioning.
• Different methods for different applications

– Geometric vs. combinatorial/topological
– Static vs. dynamic problem

• Zoltan toolkit has it all (almost…)
– Provides collection of load-balance methods
– Also provides other common parallel services
– Frees the application developer to focus on his/her

specialty area
– Easy to test and compare different methods



Slide 97

For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Email:
– {egboman,kddevin}@sandia.gov
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The End
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Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
  int *format, int *ierr);

Output from Application on Proc 0:
  num_lists = 2
  num_pins = 6
  format = ZOLTAN_COMPRESSED_VERTEX
           (owned non-zeros per vertex)
  ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
  num_lists = 5
  num_pins = 6
  format = ZOLTAN_COMPRESSED_EDGE
           (owned non-zeros per edge)
  ierr = ZOLTAN_OK

Proc 1Proc 0
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b
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Vertices

DCBA

XXXX

XXX

XX

XX

XX
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H
yp

er
ed

ge
s



Slide 100Example Hypergraph
Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
  int nvtxedge, int npins, int format,
  ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
  int *ierr);

Proc 0 Input from Zoltan:
  nvtxedge = 2 or 5
  npins = 6
  format = ZOLTAN_COMPRESSED_VERTEX or
           ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
  if (format = ZOLTAN_COMPRESSED_VERTEX)
      vtxedge_GID = {A, B}
      vtxedge_ptr = {0, 3}
      pin_GID = {a, e, f, b, d, f}
  if (format = ZOLTAN_COMPRESSED_EDGE)
      vtxedge_GID = {a, b, d, e, f}
      vtxedge_ptr = {0, 1, 2, 3, 4}
      pin_GID = {A, B, B, A, A, B}
  ierr = ZOLTAN_OK

Proc 1Proc 0
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