
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

Tutorial: Partitioning, Load Balancing
and the Zoltan Toolkit

Erik Boman and Karen Devine
Discrete Algorithms and Math Dept.
Sandia National Laboratories, NM

CSCAPES Institute

SciDAC Tutorial, MIT, June 2007

Slide 2

Outline
Part 1:
• Partitioning and load balancing

– “Owner computes” approach
• Static vs. dynamic partitioning
• Models and algorithms

– Geometric (RCB, SFC)
– Graph & hypergraph

Part 2:
• Zoltan

– Capabilities
– How to get it, configure, build
– How to use Zoltan with your application

Slide 3

 Parallel Computing in CS&E
• Parallel Computing Challenge

– Scientific simulations critical to modern science.
• Models grow in size, higher fidelity/resolution.
• Simulations must be done on parallel computers.

– Clusters with 64-256 nodes are widely available.
– High-performance computers have 100,000+

processors.
• How can we use such machines efficiently?

Slide 4

Parallel Computing Approaches
• We focus on distributed memory systems.

– Two common approaches:
• Master–slave

– A “master” processor is a global synchronization
point, hands out work to the slaves.

• Data decomposition + “Owner computes”:
– The data is distributed among the processors.
– The owner performs all computation on its data.
– Data distribution defines work assignment.
– Data dependencies among data items owned by

different processors incur communication.

Slide 5

Partitioning and Load Balancing
• Assignment of application data to processors for parallel

computation.
• Applied to grid points, elements, matrix rows, particles, ….

Slide 6

Partitioning Goals
• Minimize total execution time by…

– Minimizing processor idle time.
• Load balance data and work.

– Keeping inter-processor communication low.
• Reduce total volume, max volume.
• Reduce number of messages.

Partition of an unstructured

finite element mesh
for three processors

Slide 7

“Simple” Example (1)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

7x5 grid
5-point stencil
4 processors

Slide 8

“Simple” Example (2)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 14
Total Volume: 42
Max Nbor Proc: 2
Max Imbalance: 3%

1

2

3

0 0

0

0 0 0 0 0

0

1 1

1 1 1 1 1

1

2 2 2 2

2 2 2

2

3 3 3 3 3 3

3

First 35/4 points to processor 0;
next 35/4 points to processor 1; etc.

Slide 9

0

0

0

0 0

0

1 1 2 2 3

0

0 1

1 1 2 2 3

1

0 1 1 2

2 2 3

2

0 1 1 2 2 3

3

“Simple” Example (3)
• Finite difference method.

– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 10
Total Volume: 30
Max Nbor Proc: 2
Max Imbalance: 14% One-dimensional striped partition

Slide 10

0

1

1

0 0

0

0 0 3 3 3

0

0 0

0 0 3 3 3

0

1 1 1 2

3 3 3

2

1 1 1 2 2 2

2

“Simple” Example (4)

• Finite difference method.
– Assign equal numbers of grid points to processors.
– Keep amount of data communicated small.

Max Data Comm: 7
Total Volume: 26
Max Nbor Proc: 2
Max Imbalance: 37% Two-dimensional

structured grid partition

Slide 11

Static Partitioning

• Static partitioning in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.

Initialize
Application

Partition
Data

Distribute
Data

Compute
Solutions

Output
& End

Slide 12

Dynamic Applications
• Characteristics:

– Work per processor is unpredictable or changes during
a computation; and/or

– Locality of objects changes during computations.
– Dynamic redistribution of work is needed during

computation.

• Example:
adaptive
mesh
refinement
(AMR)
methods

Slide 13Dynamic Repartitioning
(a.k.a. Dynamic Load Balancing)

Initialize
Application

Partition
Data

Redistribute
Data

Compute
Solutions
& Adapt

Output
& End

• Dynamic repartitioning (load balancing) in an application:
– Data partition is computed.
– Data are distributed according to partition map.
– Application computes and, perhaps, adapts.
– Process repeats until the application is done.

• Ideal partition:
– Processor idle time is minimized.
– Inter-processor communication costs are kept low.
– Cost to redistribute data is also kept low.

Slide 14Static vs. Dynamic:
Usage and Implementation

• Static:
– Pre-processor to

application.
– Can be implemented

serially.
– May be slow, expensive.
– File-based interface

acceptable.
– No consideration of

existing decomposition
required.

• Dynamic:
– Must run side-by-side

with application.
– Must be implemented in

parallel.
– Must be fast, scalable.
– Library application

interface required.
– Should be easy to use.
– Incremental algorithms

preferred.
• Small changes in input

result small changes in
partitions.

• Explicit or implicit
incrementality
acceptable.

Slide 15

Two Types of Models/Algorithms
• Geometric

– Computations are tied to a geometric domain.
– Coordinates for data items are available.
– Geometric locality is loosely correlated to data

dependencies.
• Combinatorial (topological)

– No geometry .
– Connectivity among data items is known.

• Represent as graph or hypergraph.

Slide 16

• Developed by Berger & Bokhari (1987) for AMR.
– Independently discovered by others.

• Idea:
– Divide work into two equal parts

using a cutting plane orthogonal
to a coordinate axis.

– Recursively cut the
resulting subdomains.

1st cut

2nd

2nd

3rd

3rd3rd

3rd

Recursive Coordinate
Geometric Bisection (RCB)

Slide 17

• Implicitly incremental.
• Small changes in data results in small movement of

cuts.

RCB Repartitioning

Slide 18RCB Advantages
and Disadvantages

• Advantages:
– Conceptually simple; fast and inexpensive.
– Regular subdomains.

• Can be used for structured or unstructured applications.
• All processors can inexpensively know entire decomposition.

– Effective when connectivity info is not available.
• Disadvantages:

– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Mediocre partition quality.
– Geometric coordinates needed.

Slide 19

Applications of RCB

Parallel Volume Rendering

Crash Simulations
and Contact Detection

Adaptive Mesh Refinement
Particle Simulations

1.6 ms

3.2 ms

Slide 20

Variations on RCB : RIB
• Recursive Inertial Bisection

– Simon, Taylor, et al., 1991
– Cutting planes orthogonal to principle axes of geometry.
– Not incremental.

Slide 21Space-Filling Curve
Partitioning (SFC)

• Developed by Peano, 1890.
• Space-Filling Curve:

– Mapping between R3 to R1 that completely fills a domain.
– Applied recursively to obtain desired granularity.

• Used for partitioning by …
– Warren and Salmon, 1993, gravitational simulations.
– Pilkington and Baden, 1994, smoothed particle

hydrodynamics.
– Patra and Oden, 1995, adaptive mesh refinement.

Slide 22

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

9

20

19

18

17

16

15

14

1312

1110

8

7

6 5

4

321

SFC Algorithm
• Run space-filling curve through domain.
• Order objects according to position on curve.
• Perform 1-D partition of curve.

Slide 23

SFC Repartitioning

• Implicitly incremental.
• Small changes in data results in small
movement of cuts in linear ordering.

Slide 24SFC Advantages
and Disadvantages

• Advantages:
– Simple, fast, inexpensive.
– Maintains geometric locality of objects in

processors.
– Linear ordering of objects may improve cache

performance.
• Disadvantages:

– No explicit control of communication costs.
– Can generate disconnected subdomains.
– Often lower quality partitions than RCB.
– Geometric coordinates needed.

Slide 25

hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

Applications using SFC
• Adaptive hp-refinement finite element methods.

– Assigns physically close elements to same processor.
– Inexpensive; incremental; fast.
– Linear ordering can be used

to order elements for
efficient memory access.

Slide 26

Graph Partitioning
• Represent problem as a weighted

graph.
– Vertices = objects to be partitioned.
– Edges = communication between

objects.
– Weights = work load or amount of

communication.

• Partition graph so that …
– Partitions have equal vertex weight.
– Weight of edges cut by subdomain

boundaries is small.

Slide 27

Partition

Multi-Level Graph Partitioning
• Bui & Jones (1993); Hendrickson & Leland
(1993); Karypis and Kumar (1995)

• Construct smaller approximations to graph.
• Perform graph partitioning on coarse graph.
• Propagate partition back, refining as needed.

Slide 28

Graph Repartitioning
• Diffusive strategies (Cybenko, Hu,

Blake, Walshaw, Schloegel, et al.)
– Shift work from highly loaded

processors to less loaded neighbors.
– Local communication keeps data

redistribution costs low.

• Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)
– Parameter weights application communication vs.

redistribution communication.

10
1010

10

20
30

30

10

10

20

20
20

20

Partition

coarse graph

Refine partition
accounting for

current part assignment

Coarsen graph

Slide 29Graph Partitioning
Advantages and Disadvantages

• Advantages:
– High quality partitions for many applications.
– Explicit control of communication costs.
– Widely used for static partitioning (Chaco, METIS,

Jostle, Party, Scotch)
• Disadvantages:

– More expensive than
geometric approaches.

– Not incremental.

Slide 30Applications using Graph
Partitioning

• Finite element analysis
• Multiphysics simulations

– Difficult to estimate work in advance.
– Rebalance infrequently; want high

quality.
• Linear solvers and preconditioners

– Square, structurally symmetric.
– Decomposition of mesh induces good

decomposition for solver.

Slide 31Applications using Graph
Partitioning

• XYCE (S. Hutchinson, R. Hoekstra, E. Keiter, SNL)
– Massively parallel analog circuit simulator.

• Load balancing in XYCE.
– Balance linear solve phase.
– Equal number of rows while

minimizing cut edges.
– Partition matrix solver separately

from matrix fill.
– Trilinos solver library (Heroux, et al.)

uses Zoltan to partition matrix.

• Matrix structure more complex than mesh-based
applications.

– Is there a better partitioning model?
1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2

Cm012
C

1
2

Rg02
R

1
2

Rg01
R

1
2

C01
C

1
2

C02
C

12

L2

INDUCTOR

12

L1

INDUCTOR

12

R1

R

12

R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2

C2
C

1
2

C1
C

1
2

Cm12
C

Slide 32

A

Flaws in the Graph Model
• Graph model and partitioning

approach has been successful in
scientific computing, BUT…

• Graph models assume # edge cuts
= communication volume.

• In reality…
– Edge cuts are not equal to

communication volume.

Slide 33

• Graph models assume symmetric square problem.
– Symmetric == undirected graph.
– Square == inputs and outputs of operation are same size.

• Non-symmetric systems.
– Require directed or bipartite graph.

• Rectangular systems.
– Require decompositions for

differently sized inputs and outputs.

xy A

=

xy A

=

Graph Models: Applicability

Slide 34

Is the Graph Model “good enough”?
• Mesh-based applications: Yes, maybe.

– Graph partitioning works well in practice.
– Geometric structure of meshes ensures…

• Small separators and good partitions.
• Low vertex degrees give small error in graph model.

• Irregular non-mesh applications: No.
– Graph model is poor or does not apply.
– Ex: circuit simulation, discrete optimization, data

mining.
– Nonsymmetric and rectangular matrices.

Slide 35

Hypergraph Partitioning

• Hypergraph model (Aykanat & Catalyurek)
– Vertices represent computations.
– Hyperedges connect all objects which produce/use datum.

• Hyperedges connect one or more vertices (cf. graph edge always
two)

– Greater expressiveness than graph partitioners.
• Non-symmetric data dependencies.
• Rectangular matrices.

– Cut hyperedges == communication volume!

A

Graph model only approximates
communication volume.

A

Hypergraph model accurately
measures communication volume.

Slide 36

1 2

3

45

6

Matrices and Hypergraphs
• View matrix as hypergraph (Çatalyürek & Aykanat)

– Vertices == columns
– Edges == rows

• Partition vertices (columns in matrix)
• Communication volume associated with edge e:

 CVe = (# processors in edge e) - 1

• Total communication volume =

x

x**y

x****y

x***=y

x**y

x***y

!
e

e
CV

Slide 37

Hypergraph Repartitioning
• Augment hypergraph with data redistribution costs.

– Account for data’s current processor assignments.
– Weight hyperedges by data redistribution size or frequency of

use.
• Hypergraph partitioning then attempts to minimize total

communication volume:
 Data redistribution volume

+ Application communication volume
 Total communication volume

• Trade-off between application volume and redistribution cost
controlled by single knob (user parameter).

– PHG_REPART_MULTIPLIER should be (roughly) number of
application communications between repartitions.

• Can re-use existing algorithms and software.
– This approach also works for graphs.

Slide 38

Hypergraph Applications

Circuit Simulations

1

2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1

2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Linear programming
 for sensor placement

x bA

=

Linear solvers & preconditioners
(no restrictions on matrix structure)

Finite Element
Analysis

Multiphysics and
multiphase simulations

Data Mining

Slide 39Hypergraph Partitioning:
Advantages and Disadvantages

• Advantages:
– Communication volume reduced 30-38% on average

over graph partitioning (Catalyurek & Aykanat).
• 5-15% reduction for mesh-based applications.

– More accurate communication model than graph
partitioning.

• Better representation of highly connected and/or
non-homogeneous systems.

– Greater applicability than graph model.
• Can represent rectangular systems and non-symmetric

dependencies.
• Disadvantages:

– More expensive than graph partitioning.

Slide 40

Using Weights
• Some data items may have more work than
others.

• Solution: Specify work (load) using weights.
– By default, all data items have unit weights.
– Objective is to balance sum of weights.

• Geometric methods:
– Add a weight for each point.

• Graph/hypergraph methods:
– One weight per vertex.
– Can also weight edges with communication size.

Slide 41

Computation
Memory

Multi-criteria Load-balancing
• Multiple constraints or objectives

– Compute a single partition that is good
with respect to multiple factors.

• Balance both computation and memory.
• Balance meshes in loosely coupled physics.
• Balance multi-phase simulations.

– Extend algorithms to multiple weights
• Difficult. No guarantee good solution exists.

Slide 42

Heterogeneous Architectures
• Clusters may have different types of
processors.

• Assign “capacity” weights to processors.
– Compute power (speed)
– Memory

• Partitioner should balance with respect to
processor capacity.

Slide 43

 Example & Recap
• Hammond airfoil mesh
• 2d mesh, triangular elements

– 5K vertices
– 13K edges

• Partition into 8 parts

Slide 44

RCB

Total
Volume:

826

Max #mesg:
6

Slide 45

RIB

Total volume:

922

Max #mesg: 5

Slide 46

HSFC

Total volume:

1000

Max #mesg:

6

Slide 47

Graph

Total volume:

472

Max #mesg: 5

Slide 48

Hypergraph

Total volume:

464

Max #mesg: 6

Slide 49

Coffee Break!

Slide 50

Software
• Geometric partitioners

– Often embedded in application code;
• Cannot easily be re-used.

• Graph/hypergraph partitioners
– Multilevel partitioners are so complex they can take

several man-years to implement.
– Abstraction allows partitioners to be used across

many applications.

Slide 51

Software
• 1990s: Many graph partitioners

– Chaco (Sandia)
– Metis/ParMetis (U. Minnesota)
– Jostle/PJostle (U. Greenwich)
– Scotch (U. Bordeaux)
– Party (U. Paderborn)

• Great advance at the time, but…
– Single algorithm is not best for all applications.
– Interface requires application to build specific

graph data structure.

Slide 52

Our Approach: Zoltan Toolkit

• Construct applications from smaller software “parts.”
• “Tinker-toy parallel computing” -- B. Hendrickson
• Toolkits include …

– Services applications commonly need.
– Support for wide range of applications.
– Easy-to-use interfaces.
– Data-structure neutral design.

• Toolkits avoid …
– Prescribed data structures
– Heavy framework
– Limited freedom for application developers.

• Zoltan: Toolkit of Parallel Data
Management Tools for Parallel,
Unstructured Applications.

Hasbro, Inc.

Slide 53

The Zoltan Toolkit

Unstructured Communication

Data Migration Matrix Ordering

Dynamic Memory
Debugging



Dynamic Load
Balancing

Distributed Data Directories

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

• Library of data management services for unstructured, dynamic
and/or adaptive computations.

Graph Coloring

Slide 54Zoltan Supports
Many Applications

• Different applications, requirements, data structures.

Multiphysics simulations

x bA

=

Linear solvers &
preconditioners

Adaptive mesh refinement

Crash simulations

Particle methods

Parallel electronics networks

1
2

Vs
SOURCE_VOLTAGE

1
2

Rs
R

1
2 Cm012

C

1
2

Rg02
R

1
2

Rg01
R

1
2 C01

C

1
2 C02

C
12

L2

INDUCTOR

12
L1

INDUCTOR

12
R1

R

12
R2

R

1
2

Rl
R

1
2

Rg1
R

1
2

Rg2
R

1
2 C2

C

1
2 C1

C

1
2 Cm12

C

Slide 55Zoltan Toolkit:
Suite of Partitioners

• No single partitioner works best for all applications.
– Trade-offs:

• Quality vs. speed.
• Geometric locality vs. data dependencies.
• High-data movement costs vs. tolerance for remapping.

• Application developers may not know which partitioner
is best for application.

• Zoltan contains suite of partitioning methods.
– Application changes only one parameter to switch

methods.
• Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);

– Allows experimentation/comparisons to find most
effective partitioner for application.

Slide 56Zoltan Toolkit:
Suite of Partitioners

Recursive Coordinate Bisection (Berger, Bokhari)
Recursive Inertial Bisection (Taylor, Nour-Omid)

Space Filling Curves (Peano, Hilbert)
Refinement-tree Partitioning (Mitchell)

Graph Partitioning
ParMETIS (Karypis, Schloegel, Kumar)
Jostle (Walshaw)

Hypergraph Partitioning & Repartitioning
(Catalyurek, Aykanat, Boman, Devine,

Heaphy, Karypis, Bisseling)
PaToH (Catalyurek)

Slide 57

Zoltan Interface Design
• Common interface to each class of partitioners.
• Partitioning method specified with user parameters.

• Data-structure neutral design.
– Supports wide range of applications and data structures.
– Imposes no restrictions on application’s data structures.
– Application does not have to build Zoltan’s data

structures.

Slide 58

Zoltan Interface
• Simple, easy-to-use interface.

– Small number of callable Zoltan functions.
– Callable from C, C++, Fortran.

• Requirement: Unique global IDs for objects to be
partitioned. For example:

– Global element number.
– Global matrix row number.
– (Processor number, local element number)
– (Processor number, local particle number)

Slide 59

Zoltan Application Interface
• Application interface:

– Zoltan queries the application for needed info.
• IDs of objects, coordinates, relationships to other objects.

– Application provides simple functions to answer queries.
– Small extra costs in memory and function-call overhead.

• Query mechanism supports…
– Geometric algorithms

• Queries for dimensions, coordinates, etc.
– Hypergraph- and graph-based algorithms

• Queries for edge lists, edge weights, etc.
– Tree-based algorithms

• Queries for parent/child relationships, etc.
• Once query functions are implemented, application can

access all Zoltan functionality.
– Can switch between algorithms by setting parameters.

Slide 60

Zoltan Application Interface

Initialize Zoltan
(Zoltan_Initialize,
Zoltan_Create)

Select LB Method
(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

Re-partition
(Zoltan_LB_Partition)

COMPUTE

Move data
(Zoltan_Migrate)

Clean up
(Zoltan_Destroy)

APPLICATION

Zoltan_LB_Partition:
• Call query functions.
• Build data structures.
• Compute new

decomposition.
• Return import/export

lists.

Zoltan_Migrate:
• Call packing query

functions for exports.
• Send exports.
• Receive imports.
• Call unpacking query

functions for imports.

ZOLTAN

Slide 61

Zoltan Query Functions

List of graph edges. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 62For geometric partitioning
(RCB, RIB, HSFC), use …

List of graph edges. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 63For graph partitioning,
coloring & ordering, use …

List of graph edges. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 64For hypergraph partitioning
and repartitioning, use …

List of graph edges. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 65Or can use graph queries
to build hypergraph.

List of graph edges. ZOLTAN_EDGE_LIST_FN

Number of graph edges. ZOLTAN_NUM_EDGE_FN

Graph Query Functions
List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN

Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN

List of hyperedge pins. ZOLTAN_HG_CS_FN

Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN

Hypergraph Query Functions
Coordinates of items. ZOLTAN_GEOM_FN

Dimensionality of domain. ZOLTAN_NUM_GEOM_FN

Geometric Query Functions
List of item IDs and weights. ZOLTAN_OBJ_LIST_FN

Number of items on processor ZOLTAN_NUM_OBJ_FN

General Query Functions

Slide 66

Using Zoltan in Your Application

1. Decide what your objects are.
 Elements? Grid points? Matrix rows? Particles?

2. Decide which class of method to use
(geometric/graph/hypergraph).

3. Download and build Zoltan.
4. Write required query functions for your application.

 Required functions are listed with each method in Zoltan
User’s Guide.

5. Call Zoltan from your application.
6. #include “zoltan.h” in files calling Zoltan.
7. Compile; link application with libzoltan.a.

 mpicc application.c -lzoltan

Slide 67

Typical Applications
• Unstructured meshes:

– Nodes, edges, and faces all need be distributed.
– Several choices:

• Nodes are Zoltan objects (primal graph)
• Faces are Zoltan objects (dual graph)

• Sparse matrices:
– Partition rows or columns?
– Balance rows or nonzeros?

• Particle methods:
– Partition particles or cells weighted by particles?

Slide 68

Zoltan: Getting Started
• Requirements:

– C compiler
– GNU Make (gmake)
– MPI library (Message Passing Interface)

• Download Zoltan from Zoltan web site
– http://www.cs.sandia.gov/Zoltan
– Select “Download Zoltan” button.
– Submit the registration form.
– Choose the version you want;

we suggest the latest version v3.0!
– Downloaded file is zoltan_distrib_v3.0.tar.gz.

Slide 69

Configuring and Building Zoltan
• Create and enter the Zoltan directory:

– gunzip zoltan_distrib_v3.0.tar.gz
– tar xf zoltan_distrib_v3.0.tar
– cd Zoltan

• Configure and make Zoltan library
– Not autotooled; uses manual configuration file.
– “make zoltan” attempts a generic build;

library libzoltan.a is in directory Obj_generic.
– To customize your build:

• cd Utilities/Config; cp Config.linux Config.your_system
• Edit Config.your_system
• cd ../..
• setenv ZOLTAN_ARCH your_system
• make zoltan
• Library libzoltan.a is in Obj_your_system

Slide 70

Config file
DEFS =
RANLIB = ranlib
AR = ar r

CC = mpicc -Wall
CPPC = mpic++
INCLUDE_PATH =
DBG_FLAGS = -g
OPT_FLAGS = -O
CFLAGS = $(DBG_FLAGS)

F90 = mpif90
LOCAL_F90 = f90
F90CFLAGS = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS =
SPPR_HEAD = spprinc.most
F90_MODULE_PREFIX = -I
FARG = farg_typical

MPI_LIB =
MPI_LIBPATH =

PARMETIS_LIBPATH = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH = -I/Users/kddevin/code/PaToH

Slide 71

Simple Example
• Zoltan/examples/C/zoltanSimple.c
• Application data structure:

– int MyNumPts;
• Number of points on processor.

– int *Gids;
• array of Global ID numbers of points on processor.

– float *Pts;
• Array of 3D coordinates of points on processor (in same

order as Gids array).

Slide 72Example zoltanSimple.c:
Initialization

 /* Initialize MPI */
 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);
 MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

 /*
 ** Initialize application data. In this example,
 ** create a small test mesh and divide it across processors
 */

 exSetDivisions(32); /* rectilinear mesh is div X div X div */

 MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

 /* Initialize Zoltan */
 rc = Zoltan_Initialize(argc, argv, &ver);

 if (rc != ZOLTAN_OK){
 printf("sorry...\n");
 free(Pts); free(Gids);
 exit(0);
 }

Slide 73Example zoltanSimple.c:
Prepare for Partitioning

 /* Allocate and initialize memory for Zoltan structure */
 zz = Zoltan_Create(MPI_COMM_WORLD);

 /* Set general parameters */
 Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
 Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
 Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "NUM_LID_ENTRIES", "1");
 Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

 /* Set RCB parameters */
 Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
 Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
 Zoltan_Set_Param(zz, "RCB_RECTILINEAR_BLOCKS", "1");

 /* Register call-back query functions. */
 Zoltan_Set_Num_Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
 Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
 Zoltan_Set_Num_Geom_Fn(zz, exGetObjectSize, NULL);
 Zoltan_Set_Geom_Multi_Fn(zz, exGetObject, NULL);

Slide 74Example zoltanSimple.c:
Partitioning

Zoltan computes the difference (Δ) from current distribution
Choose between:
a) Import lists (data to import from other procs)
b) Export lists (data to export to other procs)
c) Both (the default)

 /* Perform partitioning */
 rc = Zoltan_LB_Partition(zz,

 &changes, /* Flag indicating whether partition changed */
 &numGidEntries, &numLidEntries,

 &numImport, /* objects to be imported to new part */
 &importGlobalGids, &importLocalGids,
 &importProcs, &importToPart,

 &numExport, /* # objects to be exported from old part */
 &exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

Slide 75Example zoltanSimple.c:
Use the Partition

 /* Process partitioning results;
 ** in this case, print information;
 ** in a "real" application, migrate data here.
 */
 if (!rc){
 exPrintGlobalResult("Recursive Coordinate Bisection",
 nprocs, me,
 MyNumPts, numImport, numExport, changes);
 }
 else{
 free(Pts);
 free(Gids);
 Zoltan_Destroy(&zz);
 MPI_Finalize();
 exit(0);
 }

Slide 76Example zoltanSimple.c:
Cleanup

 /* Free Zoltan memory allocated by Zoltan_LB_Partition. */
 Zoltan_LB_Free_Part(&importGlobalGids, &importLocalGids,
 &importProcs, &importToPart);
 Zoltan_LB_Free_Part(&exportGlobalGids, &exportLocalGids,
 &exportProcs, &exportToPart);

 /* Free Zoltan memory allocated by Zoltan_Create. */
 Zoltan_Destroy(&zz);

 /* Free Application memory */
 free(Pts); free(Gids);

 /**********************
 ** all done ***********
 **********************/

 MPI_Finalize();

Slide 77Example zoltanSimple.c:
ZOLTAN_OBJ_LIST_FN

void exGetObjectList(void *userDefinedData,
 int numGlobalIds, int numLocalIds,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int wgt_dim, float *obj_wgts,
 int *err)
{
/* ZOLTAN_OBJ_LIST_FN callback function.
** Returns list of objects owned by this processor.
** lids[i] = local index of object in array.
*/
 int i;

 for (i=0; i<NumPoints; i++)
 {
 gids[i] = GlobalIds[i];
 lids[i] = i;
 }

 *err = 0;

 return;
}

Slide 78Example zoltanSimple.c:
ZOLTAN_GEOM_MULTI_FN

void exGetObjectCoords(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)
{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
 int i, id, id3, next = 0;
 if (numDim != 3) {
 *err = 1; return;
 }
 for (i=0; i<numObjs; i++){
 id = lids[i];
 if ((id < 0) || (id >= NumPoints)) {
 *err = 1; return;
 }
 id3 = lids[i] * 3;
 pts[next++] = (double)(Points[id3]);
 pts[next++] = (double)(Points[id3 + 1]);
 pts[next++] = (double)(Points[id3 + 2]);
 }
}

Slide 79

Example Graph Callbacks
void ZOLTAN_NUM_EDGES_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_id, ZOLTAN_ID_PTR local_id,
 int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_id = {A,C,B}
 local_id = {0,1,2}

Output from Application on Proc 0:
 num_edges = {2,4,3}
 (i.e., degrees of vertices A, C, B)
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

Slide 80

Example Graph Callbacks
void ZOLTAN_EDGE_LIST_MULTI_FN(void *data,
 int num_gid_entries, int num_lid_entries,
 int num_obj, ZOLTAN_ID_PTR global_ids, ZOLTAN_ID_PTR local_ids,
 int *num_edges,
 ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
 int wdim, float *nbor_ewgts,
 int *ierr);

Proc 0 Input from Zoltan:
 num_obj = 3
 global_ids = {A, C, B}
 local_ids = {0, 1, 2}
 num_edges = {2, 4, 3}
 wdim = 0 or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc 0:
 nbor_global_id = {B, C, A, B, E, D, A, C, D}
 nbor_procs = {0, 0, 0, 0, 1, 1, 0, 0, 1}
 nbor_ewgts = if wdim then
 {7, 8, 8, 9, 1, 3, 7, 9, 5}
 ierr = ZOLTAN_OK

A

B C

D E

Proc 0

Proc 1

87

9

5 3
1

2

Slide 81

More Details on Query Functions
• void* data pointer allows user data structures to be used in all

query functions.
– To use, cast the pointer to the application data type.

• Local IDs provided by application are returned by Zoltan to
simplify access of application data.

– E.g. Indices into local arrays of coordinates.
•ZOLTAN_ID_PTR is pointer to array of unsigned integers,

allowing IDs to be more than one integer long.
– E.g., (processor number, local element number) pair.
– numGlobalIds and numLocalIds are lengths of each ID.

• All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM_MULTI_FN(void *userDefinedData,
 int numGlobalIds, int numLocalIds, int numObjs,
 ZOLTAN_ID_PTR gids, ZOLTAN_ID_PTR lids,
 int numDim, double *pts, int *err)

Slide 82

Zoltan Data Migration Tools
• After partition is computed, data must be moved to new

decomposition.
– Depends strongly on application data structures.
– Complicated communication patterns.

• Zoltan can help!
– Application supplies query functions to pack/unpack data.
– Zoltan does all communication to new processors.

Slide 83Using Zoltan’s
Data Migration Tools

• Required migration query functions:
– ZOLTAN_OBJ_SIZE_MULTI_FN:

• Returns size of data (in bytes) for each object to be exported to a new
processor.

– ZOLTAN_PACK_MULTI_FN:
• Remove data from application data structure on old processor;
• Copy data to Zoltan communication buffer.

– ZOLTAN_UNPACK_MULTI_FN:
• Copy data from Zoltan communication buffer into data structure on new

processor.

• int Zoltan_Migrate(struct Zoltan_Struct *zz,
 int num_import, ZOLTAN_ID_PTR import_global_ids,
 ZOLTAN_ID_PTR import_local_ids, int *import_procs,
 int *import_to_part,
 int num_export, ZOLTAN_ID_PTR export_global_ids,
 ZOLTAN_ID_PTR export_local_ids, int *export_procs,
 int *export_to_part);

Slide 84

Other Zoltan Functionality
• Tools needed when doing dynamic load balancing:

– Unstructured Communication Primitives
– Distributed Data Directories

• Tools closely related to graph partitioning:
– Graph coloring
– Matrix ordering
– These tools use the same query functions as graph

partitioners.
• All functionality described in Zoltan User’s Guide.

– http://www.cs.sandia.gov/Zoltan/ug_html/ug.html

Slide 85

Graph-based
decomposition

RCB
decomposition

Zoltan_Comm_Do

Zoltan_Comm_Do_Reverse

Zoltan Unstructured
Communication Package

• Simple primitives for efficient irregular communication.
– Zoltan_Comm_Create: Generates communication plan.

• Processors and amount of data to send and receive.
– Zoltan_Comm_Do: Send data using plan.

• Can reuse plan. (Same plan, different data.)
– Zoltan_Comm_Do_Reverse: Inverse communication.

• Used for most communication in Zoltan.

Slide 86Example Application:
Crash Simulations

RCB

Graph-based

RCB

RCB mapped to time 0

1.6 ms

RCB

RCB mapped to time 0

3.2 ms

•Multiphase simulation:
– Graph-based decomposition of elements for finite element calculation.
– Dynamic geometric decomposition of surfaces for contact detection.
– Migration tools and Unstructured Communication package map

between decompositions.

Slide 87

• Helps applications locate off-processor data.
• Rendezvous algorithm (Pinar, 2001).

– Directory distributed in known way (hashing) across
processors.

– Requests for object location
sent to processor storing
the object’s directory entry.

A B C
0 1 0

D E F
2 1 0

G H I
1 2 1

Processor 0 Processor 1 Processor 2

Directory Index 
 Location 

Zoltan Distributed Data Directory

A F

C

B

E

I

G H
D

Processor 0

Processor 1

Processor 2

Slide 88

Zoltan Graph Coloring
• Parallel distance-1 and distance-2 graph

coloring.
• Graph built using same application interface

and code as graph partitioners.
• Generic coloring interface; easy to add new

coloring algorithms.
• Implemented algorithms due to

Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, 2005.

Slide 89

Zoltan Matrix Ordering Interface

• Produce fill-reducing ordering for sparse matrix
factorization.

• Graph built using same application interface and
code as graph partitioners.

• Generic ordering interface; easy to add new
ordering algorithms.

• Specific interface to ordering
methods in ParMETIS (Karypis,
et al., U. Minnesota).

Slide 90

Performance Results
• Experiments on Sandia’s Thunderbird cluster.

– Dual 3.6 GHz Intel EM64T processors with 6 GB RAM.
– Infiniband network.

• Compare RCB, graph and hypergraph methods.
• Measure …

– Amount of communication induced by the partition.
– Partitioning time.

Slide 91

Test Data

SLAC *LCLS
Radio Frequency Gun

6.0M x 6.0M
23.4M nonzeros

Xyce 680K ASIC Stripped
Circuit Simulation

680K x 680K
2.3M nonzeros

Cage15 DNA
Electrophoresis

5.1M x 5.1M
99M nonzeros

SLAC Linear Accelerator
2.9M x 2.9M

11.4M nonzeros

Slide 92Communication Volume:
Lower is Better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

Number of parts
= number of
processors.

RCB
Graph
Hypergraph
HSFC

Slide 93Partitioning Time:
Lower is better

Cage15 5.1M electrophoresis

Xyce 680K circuitSLAC 6.0M LCLS

SLAC 2.9M Linear Accelerator

1024 parts.
Varying number
of processors.

RCB
Graph
Hypergraph
HSFC

Slide 94

Repartitioning Experiments
• Experiments with 64 parts on 64 processors.
• Dynamically adjust weights in data to simulate,
say, adaptive mesh refinement.

• Repartition.
• Measure repartitioning time and
total communication volume:

 Data redistribution volume
+ Application communication volume

 Total communication volume

Slide 95Repartitioning Results:
Lower is Better

Xyce 680K circuitSLAC 6.0M LCLS

Repartitioning
Time (secs)

Data
Redistribution
Volume

Application
Communication
Volume

Slide 96

Summary
• No one-size-fits-all solutions for partitioning.
• Different methods for different applications

– Geometric vs. combinatorial/topological
– Static vs. dynamic problem

• Zoltan toolkit has it all (almost…)
– Provides collection of load-balance methods
– Also provides other common parallel services
– Frees the application developer to focus on his/her

specialty area
– Easy to test and compare different methods

Slide 97

For More Information...
• Zoltan Home Page

– http://www.cs.sandia.gov/Zoltan
– User’s and Developer’s Guides
– Download Zoltan software under GNU LGPL.

• Email:
– {egboman,kddevin}@sandia.gov

Slide 98

The End

Slide 99Example Hypergraph
Callbacks

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
 int *format, int *ierr);

Output from Application on Proc 0:
 num_lists = 2
 num_pins = 6
 format = ZOLTAN_COMPRESSED_VERTEX
 (owned non-zeros per vertex)
 ierr = ZOLTAN_OK

OR

Output from Application on Proc 0:
 num_lists = 5
 num_pins = 6
 format = ZOLTAN_COMPRESSED_EDGE
 (owned non-zeros per edge)
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

Slide 100Example Hypergraph
Callbacks

 void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,
 int nvtxedge, int npins, int format,
 ZOLTAN_ID_PTR vtxedge_GID, int *vtxedge_ptr, ZOLTAN_ID_PTR pin_GID,
 int *ierr);

Proc 0 Input from Zoltan:
 nvtxedge = 2 or 5
 npins = 6
 format = ZOLTAN_COMPRESSED_VERTEX or
 ZOLTAN_COMPRESSED_EDGE

Output from Application on Proc 0:
 if (format = ZOLTAN_COMPRESSED_VERTEX)
 vtxedge_GID = {A, B}
 vtxedge_ptr = {0, 3}
 pin_GID = {a, e, f, b, d, f}
 if (format = ZOLTAN_COMPRESSED_EDGE)
 vtxedge_GID = {a, b, d, e, f}
 vtxedge_ptr = {0, 1, 2, 3, 4}
 pin_GID = {A, B, B, A, A, B}
 ierr = ZOLTAN_OK

Proc 1Proc 0

f

e

d

c

b

a

Vertices

DCBA

XXXX

XXX

XX

XX

XX

XX

H
yp

er
ed

ge
s

