Tutorial: Partitioning, Load Balancing
and the Zoltan Toolkit

Erik Boman and Karen Devine
Discrete Algorithms and Math Dept.
Sandia National Laboratories, NM

CSCAPES Institute
SciDAC Tutorial, MIT, June 2007

NSS4

Sandia s a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy's National Nuclear Security Administration
under contract DE-ACO4-94AL85000.

Sandia
National
Laboratories

;;&i

Parallel Computing in CS&E

Slide 3

Sandia
National
Laboratories

« Parallel Computing Challenge
— Scientific simulations critical to modern science.
* Models grow in size, higher fidelity/resolution.
» Simulations must be done on parallel computers.
— Clusters with 64-256 nodes are widely available.

— High-performance computers have 100,000+
processors.

;;&i

Outline @

Slide 2

Laboratories

Part 1:
« Partitioning and load balancing
— “Owner computes” approach
« Static vs. dynamic partitioning
* Models and algorithms
— Geometric (RCB, SFC)
— Graph & hypergraph
Part 2:
* Zoltan
— Capabilities
— How to get it, configure, build
— How to use Zoltan with your application

;;&i

Parallel Computing Approaches ®

Slide 4

Sandia
National
Laboratories

* We focus on distributed memory systems.
— Two common approaches:
* Master—slave
— A “master” processor is a global synchronization
point, hands out work to the slaves.
» Data decomposition + “Owner computes”:
— The data is distributed among the processors.
— The owner performs all computation on its data.
— Data distribution defines work assignment.

— Data dependencies among data items owned by
different processors incur communication.




\; c Slide 5

Partitioning and Load Balancing @i,

» Assignment of application data to processors for parallel
computation.
* Applied to grid points, elements, matrix rows, particles, ....

\; c Slide 7

“Simple” Example (1) D&

* Finite difference method.
— Assign equal numbers of grid points to processors.
— Keep amount of data communicated small.

7x5 grid
5-point stencil
4 processors

\; c Slide 6

Partitioning Goals s,

* Minimize total execution time by...
— Minimizing processor idle time.
» Load balance data and work.
— Keeping inter-processor communication low.
* Reduce total volume, max volume.
* Reduce number of messages.

Partition of an unstructured
finite element mesh
for three processors

\; c Slide 8

“Simple” Example (2) D&k

* Finite difference method.
— Assign equal numbers of grid points to processors.
— Keep amount of data communicated small.

Max Data Comm: 14
Total Volume: 42
Max Nbor Proc: 2 First 35/4 points to processor 0;
Max Imbalance: 3% next 35/4 points to processor 1; etc.




~ v Slide 9

“Simple” Example (3) i

* Finite difference method.

— Assign equal numbers of grid points to processors.
— Keep amount of data communicated small.

Max Data Comm: 10
Total Volume: 30
Max Nbor Proc: 2
Max Imbalance: 14%

One-dimensional striped partition

~ v Slide 11

Sandia

. Ty 0 National .

Static Partitioning i
Initialize _| Partition N Distribute Ly Compute | Output
Application Data Data Solutions & End

« Static partitioning in an application:
— Data partition is computed.
— Data are distributed according to partition map.
— Application computes.

* Ideal partition:
— Processor idle time is minimized.
— Inter-processor communication costs are kept low.

~ v Slide 10

“Simple” Example (4) () ..

* Finite difference method.
— Assign equal numbers of grid points to processors.
— Keep amount of data communicated small.

Max Data Comm: 7
Total Volume: 26
Max Nbor Proc: 2

Two-dimensional
Max Imbalance: 37%

structured grid partition

~ v Slide 12

Dynamic Applications ) .

» Characteristics:

— Work per processor is unpredictable or changes during
a computation; and/or

— Locality of objects changes during computations.

— Dynamic redistribution of work is needed during
computation.

* Example:
adaptive
mesh
refinement
(AMR)
methods

time = 0.0625 time =0.1875 time = 0.5




'\7 Dynamic Repartitioning

(a.k.a. Dynamic Load Balancing) @i

Slide 13

Sandia
National

» Dynamic repartitioning (load balancing) in an application:
— Data partition is computed.
— Data are distributed according to partition map.
— Application computes and, perhaps, adapts.
— Process repeats until the application is done.

* Ideal partition:
— Processor idle time is minimized.
— Inter-processor communication costs are kept low.
— Cost to redistribute data is also kept low.

Initialize _| Partition Redistribute Com;_)ute _| Output
Application Data Data ¥ Solutions & End
T & Adapt

;;&i

Slide 15

Two Types of Models/Algorithms@Eﬁ:%

* Geometric
— Computations are tied to a geometric domain.
— Coordinates for data items are available.
— Geometric locality is loosely correlated to data
dependencies.
« Combinatorial (topological)
— No geometry .
— Connectivity among data items is known.
» Represent as graph or hypergraph.

~ Static vs. Dynamic:

Usage and Implementation

b

Slide 14

Sandia
National
Laboratories

« Static: * Dynamic:
— Pre-processor to — Must run side-by-side
application. with application.
— Can be implemented — Must be implemented i
serially. parallel.

— Must be fast, scalable.

— Library application
interface required.

— Should be easy to use.

— May be slow, expensive.

— File-based interface
acceptable.

— No consideration of
existing decomposition
required.

preferred.

result small changes
partitions.

< Explicit or implicit
incrementality
acceptable.

n

— Incremental algorithms

« Small changes in input

in

;“? Recursive Coordinate

Geometric Bisection (RCB)

Slide 16

Sandia
National
Laboratories

* Developed by Berger & Bokhari (1987) for AMR.
— Independently discovered by others.

. Idea: 1st cut 3rd
— Divide work into two equal parts
using a cutting plane orthogonal - o
to a coordinate axis. 3rd
— Recursively cut the - PS g
resulting subdomains. o P
[}
[ J L J 2nd|
° [}
[
2nd *
[ J ® ® Py
° ® o
[ J ® ®




v Slide 17
P> L SEN
RCB Repartitioning o
+ Implicitly incremental.
» Small changes in data results in small movement of
cuts.
o L] o . i. L]
« ° .: « .: « ° I .
. L) —— . I—- —
. ° °® ] ° °® . Lle®
LY . LY . o o | .
o o
LIS . * o s * o r o
Slide 19
. ° National
Applications of RCB i

Particle Simulations
Adaptive Mesh Refinement
1.6 ms

Trw

Crash Simulations
and Contact Detection

Parallel Volume Rendering

\Elv RCB Advantages St 18

Sandia
and Disadvantages @ .

» Advantages:
— Conceptually simple; fast and inexpensive.
— Regular subdomains.
« Can be used for structured or unstructured applications.
< All processors can inexpensively know entire decomposition.
— Effective when connectivity info is not available.
 Disadvantages:

— No explicit control of communication costs.

— Can generate disconnected subdomains. |__|_|
— Mediocre partition quality.
— Geometric coordinates needed. =

g

Slide 20

} Sandia
Variations on RCB : RIB @&

* Recursive Inertial Bisection
— Simon, Taylor, et al., 1991

— Cutting planes orthogonal to principle axes of geometry.
— Not incremental.




,;&i

Space-Filling Curve
Partitioning (SFC)

Slide 21

Sandia
National
Laboratories

* Developed by Peano, 1890.

» Space-Filling Curve:
— Mapping between R? to R that completely fills a domain.
— Applied recursively to obtain desired granularity.

* Used for partitioning by ...
— Warren and Salmon, 1993, gravitational simulations.

— Pilkington and Baden, 1994, smoothed particle
hydrodynamics.

— Patra and Oden, 1995, adaptive mesh refinement.

==N==R i

] :] =1 [:.'
1 | | r—r] [_'_'I |
| Y9 | HeET

,;&i

SFC Repartitioning

Slide 23

Sandia
National
Laboratories

* Implicitly incremental.
* Small changes in data results in small
movement of cuts in linear ordering.

N

\\%\\l‘g/AZZ g §§:\/ -
NN N VNN e
N\ N\

~ v Slide 22

SFC Algorithm GRS

* Run space-filling curve through domain.
* Order objects according to position on curve.
* Perform 1-D partition of curve.

SFC Advantages sl 2
and Disadvantages k=

,;&i

* Advantages:
— Simple, fast, inexpensive.
— Maintains geometric locality of objects in
processors.
— Linear ordering of objects may improve cache
performance.
 Disadvantages:
— No explicit control of communication costs.
— Can generate disconnected subdomains.
— Often lower quality partitions than RCB.
— Geometric coordinates needed.




Slide 25

Applications using SFC s,

\

» Adaptive hp-refinement finite element methods.
— Assigns physically close elements to same processor.
— Inexpensive; incremental; fast.
— Linear ordering can be used
to order elements for
efficient memory access.

Px

=N oW AW

hp-refinement mesh; 8 processors.
Patra, et al. (SUNY-Buffalo)

~ ; v Slide 27

Multi-Level Graph Partitioning ) .

* Bui & Jones (1993); Hendrickson & Leland
(1993); Karypis and Kumar (1995)

» Construct smaller approximations to graph.

* Perform graph partitioning on coarse graph.

* Propagate partition back, refining as needed.

o o0nw=

o* ) o

. Graph Partitioning @i

* Represent problem as a weighted
graph.
— Vertices = objects to be partitioned.

— Edges = communication between
objects.

— Weights = work load or amount of
communication.

« Partition graph so that ...
— Partitions have equal vertex weight.

— Weight of edges cut by subdomain
boundaries is small.

~ ; v Slide 28

Graph Repartitioning (@) i,

* Diffusive strategies (Cybenko, Hu,
Blake, Walshaw, Schloegel, et al.)
— Shift work from highly loaded
processors to less loaded neighbors.

— Local communication keeps data
redistribution costs low.

» Multilevel partitioners that account for data redistribution
costs in refining partitions (Schloegel, Karypis)

— Parameter weights application communication vs.
redistribution communication.

Coarsen graph ' W Refine partition

Partition accounting for

' — ‘v current part assignment

coarse graph




dvantages and Disadvantages ®

Graph Partitioning Side 29

Sandia
National
Laboratories

* Advantages:
— High quality partitions for many applications.
— Explicit control of communication costs.

— Widely used for static partitioning (Chaco, METIS,
Jostle, Party, Scotch)

* Disadvantages:

— More expensive than
geometric approaches.

— Not incremental.

W; Applications using Graph @“”m

Partitioning

* XYCE (S. Hutchinson, R. Hoekstra, E. Keiter, SNL)
— Massively parallel analog circuit simulator.

« Load balancing in XYCE. ! 1

— Balance linear solve phase. t oot o N .

— Equal number of rows while R

minimizing cut edges. @ o I

— Partition matrix solver separately % e :
from matrix fill.

— Trilinos solver library (Heroux, et al.) % ok
uses Zoltan to partition matrix.

-+
S

-

-+

» Matrix structure more complex than mesh-based
applications.

— Is there a better partitioning model?

ide 31

Laboratories

-

V\E;? Applications using Graph
Partitioning

Slide 30

* Finite element analysis

* Multiphysics simulations
— Difficult to estimate work in advance.
— Rebalance infrequently; want high
quality.
* Linear solvers and preconditioners
— Square, structurally symmetric.

— Decomposition of mesh induces good
decomposition for solver.

; Flaws in the Graph Model

Slide 32

Sandia
National
Laboratories

» Graph model and partitioning
approach has been successful in
scientific computing, BUT...

» Graph models assume # edge cuts
= communication volume.

* In reality...

— Edge cuts are not equal to

communication volume.




Slide 33

;;’ Graph Models: Applicability @)igs,_

» Graph models assume symmetric square problem.
— Symmetric == undirected graph.
— Square == inputs and outputs of operation are same size.

* Non-symmetric systems.
— Require directed or bipartite graph.

n
= [ITTTTT]

y A
* Rectangular systems. =
— Require decompositions for = H T
differently sized inputs and outputs. [T

y A X

Slide 35

& /"i @ Sandia
- National
Laboratories
» Hypergraph model (Aykanat & Catalyurek)
— Vertices represent computations.
— Hyperedges connect all objects which produce/use datum.

« Hyperedges connect one or more vertices (cf. graph edge always
two)

— Greater expressiveness than graph partitioners.
+ Non-symmetric data dependencies.
+ Rectangular matrices.

— Cut hyperedges == communication volume!

Hypergraph Partitioning

R U

A\

Graph model only approximates Hypergraph model accurately
communication volume. es ication vol.

-

Slide 34

"I the Graph Model “good enough”®E2.

* Mesh-based applications: Yes, maybe.
— Graph partitioning works well in practice.
— Geometric structure of meshes ensures...
» Small separators and good partitions.
» Low vertex degrees give small error in graph model.

* Irregular non-mesh applications: No.
— Graph model is poor or does not apply.
— Ex: circuit simulation, discrete optimization, data
mining.
— Nonsymmetric and rectangular matrices.

-

S

Matrices and Hypergraphs

Slide 36

Sandia
National
Laboratories

» View matrix as hypergraph (Gatalyiirek & Aykanat)
— Vertices == columns
— Edges ==rows
« Partition vertices (columns in matrix)
+ Communication volume associated with edge e:
CV_ = (# processors in edge e) - 1

* Total communication volume = cv
E ¢
e
y * Kk % X
y * * X
y = * * * X
y *ik ok % X
y * * X




V Hypergraph Repartitioning @&

« Augment hypergraph with data redistribution costs.
— Account for data’s current processor assignments.

— Weight hyperedges by data redistribution size or frequency of
use.

» Hypergraph partitioning then attempts to minimize total
communication volume:

Data redistribution volume
+ Application communication volume
Total communication volume

+ Trade-off between application volume and redistribution cost
controlled by single knob (user parameter).
— PHG_REPART_MULTIPLIER should be (roughly) number of
application communications between repartitions.
« Can re-use existing algorithms and software.
— This approach also works for graphs.

Sandia
ional

} Hypergraph Partitioning: Siide 39
Advantages and Disadvantages ) ..

* Advantages:
— Communication volume reduced 30-38% on average
over graph partitioning (Catalyurek & Aykanat).
* 5-15% reduction for mesh-based applications.
— More accurate communication model than graph
partitioning.
+ Better representation of highly connected and/or
non-homogeneous systems.

— Greater applicability than graph model.

+ Can represent rectangular systems and non-symmetric
dependencies.

* Disadvantages:
— More expensive than graph partitioning.

Sandia
National
Laboratories

Linear pfogrémﬁing
Finite Element for sensor placement

Analysis

A X b
Linear solvers & preconditioners

Circuit Simulations o 3
(no restrictions on matrix structure)

Multiphysics and
multiphase simulations

FAd

Using Weights

Sandia
National
Laboratories

Slide 40

* Some data items may have more work than
others.
* Solution: Specify work (load) using weights.
— By default, all data items have unit weights.
— Objective is to balance sum of weights.
* Geometric methods:
— Add a weight for each point.
* Graph/hypergraph methods:
— One weight per vertex.
— Can also weight edges with communication size.

10

10



_— Slide 41 _— Slide 42
Multi-criteria Load-balancing Ut Heterogeneous Architectures Ut

* Multiple constraints or objectives * Clusters may have different types of
— Compute a single partition that is good

. . processors.
with respect to multiple factors.
+ Balance both computation and memory. * Assign “capacity” weights to processors.
« Balance meshes in loosely coupled physics. _ compute power (speed)
< Balance multi-phase simulations.
— Memory

— Extend algorithms to multiple weights . .
- Difficult. No guarantee good solution exists.  Partitioner should balance with respect to

processor capacity.

m Computation
o Memory

\E ; ? Slide 43 -~ Slide 44
> Sandia = S aﬂ'&
Example & Recap . ; RCB D=

+ Hammond airfoil mesh N
* 2d mesh, triangular elements

Total
— 5K vertices Volume:
—13K edges 826
* Partition into 8 parts Max #mesg:

6




FAd

@
National
Labor

ratories

Slide 45

Total volume:
922
Max #mesg: 5

FAd

Total volume:

Slide 46

Sandia
National
Laboratories

1000
Max #mesg:
6

FAd

Slide 47

Sandia
National
Laboratories

Total volume:
472
Max #mesg: 5

1

PO
gﬁ.ﬂ.wg% Jg ﬁ
i

TN

$i5
K

)
4
VA:

FAd

Slide 48

Sandia
National
Laboratories

Total volume:
464
Max #mesg: 6

12

12



W Slide 49 W Slide 50
P Santia — Santia
‘/-' Coffee Break! @mﬂm ‘/-' Software @mﬂm

» Geometric partitioners
— Often embedded in application code;
+ Cannot easily be re-used.
* Graph/hypergraph partitioners
— Multilevel partitioners are so complex they can take
several man-years to implement.

— Abstraction allows partitioners to be used across
many applications.

- ? Slide 51 v Slide 52

_ ol Software s, d /" Our Approach: Zoltan Toolkit @)gs,
*1990s: Many graph partitioners » Construct applications from smaller software “parts.”
— Chaco (Sandia) * “Tinker-toy parallel computing” -- B. Hendrickson
— Metis/ParMetis (U. Minnesota) * Toolkits include ...

— Services applications commonly need.

—Jostle/PJostle (U. Greenwich) — Support for wide range of applications.
—Scotch (U. Bordeaux) — Easy-to-use interfaces. ‘
— Party (U. Paderborn) — Data-structure neutral design. \ a8

« Great advance at the time, but... * Toolkits avoid ...
— Prescribed data structures [ 4 /

/>

— Single algorithm is not best for all applications. — Heavy framework

— Interface requires application to build specific — Limited freedom for application developers.
graph data structure. » Zoltan: Toolkit of Parallel Data

Management Tools for Parallel,

Unstructured Applications.

: M
:fﬁ

Hasbro, Inc. .




Slide 53
i
|

The Zoltan Toolkit GRS

« Library of data management services for unstructured, dynamic
and/or adaptive computations.

123456
Dynamic Loa . Graph Coloring ‘o, o
Balancing 4 L e
PR P I ag a3
L .
° o .. . ay
Matrix Ordering
Unstructured Communlcatlon Distributed Data Directories Dynamic Memory
Deb i
NEEEOE ebugging

211(0(1|2(1

Zoltan Supports
Many Applications

Slide 54

Sandia
National
Laboratories

- Different applications, requirements, data structures.

Lt
L2

cmorz
Re
L

wuj} o

Parallel electronics networks

Partlcle methods )

| |
Multiphysics simulations ?ﬁ ﬁ

Crash simulations

A X
Linear solvers &
preconditioners

TTT
1

Adaptive mesh refinement

Zoltan Toolkit: @S’ZIS
Suite of Partitioners st

* No single partitioner works best for all applications.

— Trade-offs:
* Quality vs. speed.
« Geometric locality vs. data dependencies.
» High-data movement costs vs. tolerance for remapping.
* Application developers may not know which partitioner

is best for application.

« Zoltan contains suite of partitioning methods.
— Application changes only one parameter to switch
methods.
« Zoltan_Set_Param(zz, “LB_METHOD”, “new_method_name”);
— Allows experimentation/comparisons to find most
effective partitioner for application.

Zoltan Toolkit: sioe s
Suite of Partitioners D=

R

ecursive Coordinate Bisection (Berger, Bokhari)

|_Recursi

Recursive Inertial Bisection (Taylor, Nour-Omid)

Graph Partitioning

Space Filling Curves (Peano, Hilbert)
hd Refinement-tree Partitioning (Mitchell) -

ParMETIS (Karypis, Schloegel, Kumar)

Jostle (Walshaw)

Hypergraph Partitioning & Repartitioning
(Catalyurek, Aykanat, Boman, Devine,
Heaphy, Karypis, Bisseling)

PaToH (Catalyurek)

14

14



~ v Slide 57

Sandia
National
Laboratories

Zoltan Interface Design

» Common interface to each class of partitioners.
* Partitioning method specified with user parameters.

+ Data-structure neutral design.
— Supports wide range of applications and data structures.
— Imposes no restrictions on application’s data structures.

— Application does not have to build Zoltan’s data
structures.

~ v Slide 59

Zoltan Application Interface i

» Application interface:
— Zoltan queries the application for needed info.
- IDs of objects, coordinates, relationships to other objects.
— Application provides simple functions to answer queries.
— Small extra costs in memory and function-call overhead.
* Query mechanism supports...
— Geometric algorithms
* Queries for dimensions, coordinates, etc.
— Hypergraph- and graph-based algorithms
* Queries for edge lists, edge weights, etc.
— Tree-based algorithms
 Queries for parent/child relationships, etc.
* Once query functions are implemented, application can
access all Zoltan functionality.
— Can switch between algorithms by setting parameters.

,;&i

Zoltan Interface

Slide 58

Sandia
National
Laboratories

 Simple, easy-to-use interface.
— Small number of callable Zoltan functions.
— Callable from C, C++, Fortran.

- Requirement: Unique global IDs for objects to be
partitioned. For example:
— Global element number.

— Global matrix row number.
— (Processor number, local element number)
— (Processor number, local particle number)

Slide 60

Sandia
National
Laboratories

Initialize Zoltan
(Zoltan_lInitialize,
Zoltan_Create)

!

Select LB Method
(Zoltan_Set_Params)

Register
query functions
(Zoltan_Set_Fn)

APPLICATION

COMPUTE

ZOLTAN

Re-partition
(Zoltan_LB_Partition)

Zoltan_LB_Partition:
« Call query functions.
+ Build data structures.

7

Compute new
decomposition.
Return import/export
lists.

l

Move data
(Zoltan_Migrate)

.

Clean up
(Zoltan_Destroy)

Zoltan_Migrate:
« Call packing query

» Send exports.
* Receive imports.
« Call unpacking query

functions for exports.

functions for imports.

15

15



Ste o1 : For geometric partitioning Ste 62
' (D)= : G
Zoltan Query Functions ot (RCB, RIB, HSFC), use ... Lot
General Query Functions
ZOLTAN_NUM_OBJ_FN Number of items on processor
ZOLTAN_OBJ_LIST_FN List of item IDs and weights.
Geometric Query Functions
ZOLTAN_NUM_GEOM_FN Dimensionality of domain.
ZOLTAN_GEOM_FN Coordinates of items.
Hypergraph Query Functions Hypergraph Query Functions
ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins. ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins.
ZOLTAN_HG_CS_FN List of hyperedge pins. ZOLTAN_HG_CS_FN List of hyperedge pins.
ZOLTAN_HG_SIZE_EDGE_WTS_FN | Number of hyperedge weights. ZOLTAN_HG_SIZE_EDGE_WTS_FN | Number of hyperedge weights.
ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights. ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights.
Graph Query Functions Graph Query Functions
ZOLTAN_NUM_EDGE_FN Number of graph edges. ZOLTAN_NUM_EDGE_FN Number of graph edges.
ZOLTAN_EDGE_LIST_FN List of graph edges. ZOLTAN_EDGE_LIST_FN List of graph edges.
For graph partitioning, Siide 63 A or hypergraph partitioning Side 64
. . e, ’ . () e,
coloring & ordering, use ... i and repartitioning, use ... Lot

Geometric Query Functions Geometric Query Functions
ZOLTAN_NUM_GEOM_FN Dimensionality of domain. ZOLTAN_NUM_GEOM_FN Dimensionality of domain.
ZOLTAN_GEOM_FN Coordinates of items. ZOLTAN_GEOM_FN Coordinates of items.

Hypergraph Query Functions

ZOLTAN_HG_SIZE_CS_FN Number of hyperedge pins.
ZOLTAN_HG_CS_FN List of hyperedge pins.
ZOLTAN_HG_SIZE_EDGE_WTS_FN | Number of hyperedge weights.
ZOLTAN_HG_EDGE_WTS_FN List of hyperedge weights.

Graph Query Functions

ZOLTAN_NUM_EDGE_FN Number of graph edges.
ZOLTAN_EDGE_LIST_FN List of graph edges.




W Or can use graph queries ste 05
to build hypergraph. @ .

Geometric Query Functions
ZOLTAN_NUM_GEOM_FN
ZOLTAN_GEOM_FN

Dimensionality of domain.
Coordinates of items.

Hypergraph Query Functions
ZOLTAN_HG_SIZE_CS_FN
ZOLTAN_HG_CS_FN

Number of hyperedge pins.
List of hyperedge pins.
ZOLTAN_HG_SIZE_EDGE_WTS_FN | Number of hyperedge weights.
ZOLTAN_HG_EDGE_WTS_FN

List of hyperedge weights.

i Typical Applications ) ..

* Unstructured meshes:

— Nodes, edges, and faces all need be distributed.
— Several choices:

» Nodes are Zoltan objects (primal graph)

+ Faces are Zoltan objects (dual graph)

* Sparse matrices:
— Partition rows or columns?
— Balance rows or nonzeros?
* Particle methods:
— Partition particles or cells weighted by particles?

; Using Zoltan in Your Application

Slide 66

Sandia
National
Laboratories

1. Decide what your objects are.
= Elements? Grid points? Matrix rows? Particles?

2. Decide which class of method to use
(geometric/graph/hypergraph).

3. Download and build Zoltan.

4. Write required query functions for your application.

= Required functions are listed with each method in Zoltan
User’s Guide.

5. Call Zoltan from your application.

6. #include “zoltan.h” in files calling Zoltan.

7. Compile; link application with libzoltan.a.
= mpicc application.c -Izoltan

; Zoltan: Getting Started

Slide 68

Sandia
National
Laboratories

* Requirements:
— C compiler
— GNU Make (gmake)
— MPI library (Message Passing Interface)

» Download Zoltan from Zoltan web site
— http://www.cs.sandia.gov/Zoltan
— Select “Download Zoltan” button.
— Submit the registration form.

— Choose the version you want;
we suggest the latest version v3.0!

— Downloaded file is zoltan_distrib_v3.0.tar.gz.

17

17



> Configuring and Building Zoltan .

* Create and enter the Zoltan directory:
— gunzip zoltan_distrib_v3.0.tar.gz
— tar xf zoltan_distrib_v3.0.tar
— cd Zoltan
» Configure and make Zoltan library
— Not autotooled; uses manual configuration file.
— “make zoltan” attempts a generic build;
library libzoltan.a is in directory Obj_generic.
— To customize your build:
cd Utilities/Config; cp Config.linux Config.your_system
Edit Config.your_system
*cd.l.
setenv ZOLTAN_ARCH your_system
make zoltan
Library libzoltan.a is in Obj_your_system

.

.

.

.

.

Slide 71

> Simple Example i

« Zoltan/examples/C/zoltanSimple.c
» Application data structure:

— int MyNumPts;

* Number of points on processor.
—int *Gids;

- array of Global ID numbers of points on processor.
—float *Pts;

« Array of 3D coordinates of points on processor (in same
order as Gids array).

Slide 70
@ Sandia
National .
Config file bt
DEFS =
RANLIB = ranlib
AR =arr
cc = mpicc -Wall
CPPC = mpic++
INCLUDE_PATH =
DBG_FLAGS = -g
OPT_FLAGS = -0
CFLAGS = $(DBG_FLAGS)
F90 = mpif90
LOCAL_F90 = £90
F90CFLAGS = -DFMANGLE=UNDERSCORE -DNO_MPI2
FFLAGS =
SPPR_HEAD = spprinc.most
F90_MODULE_PREFIX = -I
FARG = farg_typical
MPI_LIB =
MPI_LIBPATH =
PARMETIS_LIBPATH = -L/Users/kddevin/code/ParMETIS3_1
PARMETIS_INCPATH = -I/Users/kddevin/code/ParMETIS3_1
#PATOH_LIBPATH = -L/Users/kddevin/code/PaToH
#PATOH_INCPATH = -I/Users/kddevin/code/PaToH

;/}c Example zoltanSimple.c: e
Initialization .

/* Initialize MPI */

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM WORLD, &nprocs);

'\

/*
*% Initialize application data. 1In this example,

** create a small test mesh and divide it across processors
*/

exSetDivisions(32); /* rectilinear mesh is div X div X div */
MyNumPts = exInitializePoints(&Pts, &Gids, me, nprocs);

/* Initialize Zoltan */
rc = Zoltan_Initialize(argc, argv, &ver);

if (rc != ZOLTAN_OK){
printf("sorry...\n");
free(Pts); free(Gids);
exit(0);

}

18

18



~ Example zoltanSimple.c:

Prepare for Partitioning ®

Slide 73

Sandia
National

Laboratories

/* Allocate and initialize memory for Zoltan structure */
2z = Zoltan Create(MPI_COMM WORLD) ;

/* Set general parameters */
Zoltan_Set_Param(zz, "DEBUG_LEVEL", "0");
Zoltan_Set_Param(zz, "LB_METHOD", "RCB");
Zoltan_Set_Param(zz, "NUM_GID_ENTRIES", "1");
Zoltan_Set_Param(zz, "NUM_LID ENTRIES", "1");
Zoltan_Set_Param(zz, "RETURN_LISTS", "ALL");

/* Set RCB parameters */

Zoltan_Set_Param(zz, "KEEP_CUTS", "1");
Zoltan_Set_Param(zz, "RCB_OUTPUT_LEVEL", "0");
Zoltan_Set_Param(zz, "RCB_RECTILINEAR BLOCKS", "1");

/* Register call-back query functions. */

Zoltan_Set_Num Obj_Fn(zz, exGetNumberOfAssignedObjects, NULL);
Zoltan_Set_Obj_List_Fn(zz, exGetObjectList, NULL);
Zoltan_Set_Num_Geom Fn(zz, exGetObjectSize, NULL);
Zoltan_Set_Geom Multi_Fn(zz, exGetObject, NULL);

= Example ZOltanSimple,c; Slide 74

Sandia
Partitioning D=

Zoltan computes the difference (A) from current distribution
Choose between:

a) Import lists (data to import from other procs)

b) Export lists (data to export to other procs)

¢) Both (the default)

/* Perform partitioning */

rc = Zoltan_ LB_Partition(zz,
&changes, /* Flag indicating whether partition changed */
&numGidEntries, &numLidEntries,
&numImport, /* objects to be imported to new part */
&importGlobalGids, &importLocalGids,
&importProcs, &importToPart,
&numExport, /* # objects to be exported from old part */
&exportGlobalGids, &exportLocalGids,
&exportProcs, &exportToPart);

~ Example zoltanSimple.c:
Use the Partition @

/* Process partitioning results;
** in this case, print information;
** in a "real" application, migrate data here.
*/
if (!re){
exPrintGlobalResult ("Recursive Coordinate Bisection",
nprocs, me,
MyNumPts, numImport, numExport, changes);
}
else{
free(Pts);
free(Gids);
Zoltan_Destroy(&zz);
MPI_Finalize();
exit(0);

Slide 75

Sandia
National
Laboratories

~ Example zoltanSimple.c:

Slide 76

Cleanup @ .

/* Free Zoltan memory allocated by Zoltan_ LB Partition. */

Zoltan_LB_Free_ Part(&importGlobalGids, &importLocalGids,
&importProcs, &importToPart);

Zoltan_LB_Free_ Part(&exportGlobalGids, &exportLocalGids,
&exportProcs, &exportToPart);

/* Free Zoltan memory allocated by Zoltan_Create. */
Zoltan_Destroy(&zz);

/* Free Application memory */
free(Pts); free(Gids);

[ KKKk kKK Kk ok ko kK Kk ok kK K

*% a1l done ***kkkkkkkk*
KA KKKk KKK Kk h kKRR Kk h Kk )

MPI_Finalize();

19

19



> Example zoltanSimple.c: S 7
ZOLTAN OBJ LIST FN [ .

void exGetObjectList(void *userDefinedData,
int numGlobalIds, int numLocallds,
ZOLTAN_ID_PTR gids, ZOLTAN_ID PTR lids,
int wgt_dim, float *obj_wgts,
int *err)

/* ZOLTAN_OBJ_LIST FN callback function.
** Returns list of objects owned by this processor.
*%* 1lids[i] = local index of object in array.

int i;

for (i=0; i<NumPoints; i++)
{
gids[i] = Globallds[i];
lids[i] = i;

}
*err = 0;

return;

}

-~ Slide 79

Example Graph Callbacks @i

void ZOLTAN_NUM EDGES_MULTI_FN(void *data,
int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID PTR global_id, ZOLTAN_ID PTR local_id,
int *num_edges, int *ierr);

Proc 0 Input from Zoltan:
num_obj = 3
global_id = {A,C,B}
local_id = {0,1,2}

Output from Application on Proc O:
num_edges = {2,4,3}
(i.e., degrees of vertices A, C, B) A

jerr = ZOLTAN_OK Proc

. Example zoltanSimple.c: sie 79
ZOLTAN_GEOM_MULTI_FN i

void exGetObjectCoords(void *userDefinedData,
int numGlobalIds, int numLocallds, int numObjs,

ZOLTAN_ID_ PTR gids, ZOLTAN_ID_ PTR lids,
int numDim, double *pts, int *err)

{
/* ZOLTAN_GEOM_MULTI_FN callback.
** Returns coordinates of objects listed in gids and lids.
*/
int i, id, id3, next = 0;
if (numDim != 3) {
*err = 1; return;
}
for (i=0; i<numObjs; i++){
id = lids[i];
if ((id < 0) || (id >= NumPoints)) {
*err = 1; return;

}
id3 = lids[i] * 3;

’ Example Graph Callbacks i

pts[next++] = (double) (Points[id3]);
pts[next++] = (double) (Points[id3 + 1]);
pts[next++] = (double) (Points[id3 + 2]);
}
}
- Slide 80

void ZOLTAN_EDGE LIST MULTI_FN(void *data,
int num_gid_entries, int num_lid_entries,
int num_obj, ZOLTAN_ID PTR global_ids, ZOLTAN_ID_PTR local_ids,
int *num_edges,
ZOLTAN_ID_PTR nbor_global_id, int *nbor_procs,
int wdim, float *nbor_ewgts,
int *ierr);

Proc 0 Input from Zoltan:
num_obj = 3
global_ids = {A, C, B}
local_ids = {0, 1, 2}
num_edges = {2, 4, 3}
wdim = O or EDGE_WEIGHT_DIM parameter value

Output from Application on Proc O:
nbor_global_id = {B, C, A, B, E, D
nbor_procs = {0, 0, 0, 0, 1, 1
nbor_ewgts = if wdim then

{7, 8, 8, 9,1, 3,7, 9, 5
ierr = ZOLTAN_OK

20

20



- Slide 81

Sandia
National
ratories

More Details on Query Functions@%

« void* data pointer allows user data structures to be used in all
query functions.
— To use, cast the pointer to the application data type.
* Local IDs provided by application are returned by Zoltan to
simplify access of application data.
— E.g. Indices into local arrays of coordinates.
+ ZOLTAN_ID_PTR is pointer to array of unsigned integers,
allowing IDs to be more than one integer long.
— E.g., (processor number, local element number) pair.
— numGloballIds and numLocalIds are lengths of each ID.
« All memory for query-function arguments is allocated in Zoltan.

void ZOLTAN_GET_GEOM MULTI_FN(void *userDefinedData,
int numGloballds, int numLocallds, int numObjs,
ZOLTAN_ID PTR gids, ZOLTAN_ID_PTR lids,
int numDim, double *pts, int *err)

~ Using Zoltan’s sl
Data Migration Tools k=

* Required migration query functions:
— ZOLTAN_OBJ_SIZE_MULTI_FN:

« Returns size of data (in bytes) for each object to be exported to a new
processor.

— ZOLTAN_PACK_MULTI_FN:
+ Remove data from application data structure on old processor;
« Copy data to Zoltan communication buffer.

— ZOLTAN_UNPACK_MULTI_FN:

« Copy data from Zoltan communication buffer into data structure on new
processor.

+ int Zoltan_Migrate(struct Zoltan_Struct *zz,
int num_import, ZOLTAN_ID_PTR import_global_ids,
ZOLTAN_ID_PTR import_local_ids, int *import_procs,
int *import_to_part,
int num_export, ZOLTAN_ID_PTR export_global_ids,
ZOLTAN_ID_PTR export_local_ids, int *export_procs,
int *export_to_part);

Slide 82

Zoltan Data Migration Tools [ .

Sandia
National

After partition is computed, data must be moved to new
decomposition.
— Depends strongly on application data structures.
— Complicated communication patterns.
Zoltan can help!
— Application supplies query functions to pack/unpack data.
— Zoltan does all communication to new processors.

Slide 84

Other Zoltan Functionality ®

Sandia
National
Laboratories

* Tools needed when doing dynamic load balancing:
— Unstructured Communication Primitives
— Distributed Data Directories
* Tools closely related to graph partitioning:
— Graph coloring
— Matrix ordering

— These tools use the same query functions as graph
partitioners.

« All functionality described in Zoltan User’s Guide.
— http://Iwww.cs.sandia.gov/Zoltan/ug_html/ug.html

21

21



Zoltan Unstructured

-
Communication Package Ut

Slide 85

» Simple primitives for efficient irregular communication.
— Zoltan_Comm_Create: Generates communication plan.
« Processors and amount of data to send and receive.
— Zoltan_Comm_Do: Send data using plan.
« Can reuse plan. (Same plan, different data.)
— Zoltan_Comm_Do_Reverse: Inverse communication.
+ Used for most communication in Zoltan.

Zoltan_Comm_Do

— >
Graph-based RCB
—

decomposition

Zoltan_Comm_Do_Reverse

decomposition

,; Zoltan Distributed Data Directory@ =R

Slide 87

* Helps applications locate off-processor data.
* Rendezvous algorithm (Pinar, 2001).

— Directory distributed in known way (hashing) across
processors.

— Requests for object location

Processor 2

sent to processor storing Processor 1 E D
the object’s directory entry. . A lu
|
Processor 0
Directory Index > DIE|F G|H|I
Location > 2(1|0 1121

Processor 0 Processor 1

Processor 2

Slide 86

Example Application: B

Crash Simulations
*Multiphase simulation:
— Graph-based decomposition of elements for finite element calculation.
— Dynamic geometric decomposition of surfaces for contact detection.

— Migration tools and Unstructured Communication package map
between decompositions.

RCB RCB

&

Graph-based RCB mapped to time 0 RCB mapped to time 0

E,; Zoltan Graph Coloring i

« Parallel distance-1 and distance-2 graph
coloring.

* Graph built using same application interface
and code as graph partitioners.

» Generic coloring interface; easy to add new
coloring algorithms.

* Implemented algorithms due to
Bozdag, Catalyurek, Gebremedhin,
Manne, Boman, 2005.

22

22



; Zoltan Matrix Ordering Interface@”ﬁ”:?:"ﬁi"‘* ; Performance Results i

* Experiments on Sandia’s Thunderbird cluster.

* Produce fill-reducing ordering for sparse matrix — Dual 3.6 GHz Intel EMB4T processors with 6 GB RAM.
factorization. — Infiniband network.

» Graph built using same application interface and - Compare RCB, graph and hypergraph methods.
code as graph partitioners. - Measure ...

* Generic ordering interface; easy to add new — Amount of communication induced by the partition.
ordering algorithms. — Partitioning time.

» Specific interface to ordering
methods in ParMETIS (Karypis,
et al., U. Minnesota).

= 5% Communication Volume: >
Test Data = . BE-
Lower is Better

R SLAC 6.0M LCLS Number of parts | Xyce 680K circuit
Xyce 680K ASIC Stripped _ Chumber of | 2ee
Clrcunésst;lr(nulzgglr(l = e processors. roeeas
* s £
2.3M nonzeros H g aom0s
£ 80805 H
s Irce o
SLAC *LCLS H “ 20ev06
Radio Frequency Gun 208405 llGrapn
008400
23.4M nonseros |2 ‘ e | IMyporgraph T L
E Cage15 DNA | Mamberoprocessors HSFC -
Electrophoresis iﬁ;ﬂ:\c 2.9M Linear Accelerator I Clig$15 5.1M electrophoresis
5.1M x 5.1M Lo .
99M nonzeros Y o
Eraeis Eionor
$ 1L0ev0s S
: £ 808406
2 8.0E+05 H
g £ 6.0£406

SLAC Linear Accelerator

T S soei0s :
2.9M x 2.9M |- Jumos
11.4M nonzeros 20405 l I l L i 208406
[ (LU

B T T — swon - 2o Lo Lo Th T o

Number of Processors

2 4 8 16 32 64 128 25 512 1024
Number of Processors




Slide 93

Sandia
National
Laboratories

Partitioning Time:
Lower is better

FA

SLAC 6.0M LCLS 1024 parts. Xyce 680K circuit
1000 Varying number
of processors. | -
7 w0 )
e £
i Irce i
IGraph
T . s % m e s e sn o IHypergraph R EEE
Number of Processors Hch Number of Processors
SLAC 2.9M Linear Accelerator Cage15 5.1M electrophoresis
10 10000
o 10
7 o0
FE :
H .
e H
oot

1 2 4 8 16 32 64 128 256 512 1024 : 1 2 4 8 16 32 64 128 256 512 1024
Number of Processors Number of Processors

W Repartitioning Results: @S’Z;: ’

Lower is Better

SLAC 6.0M LCLS Xyce 680K circuit
250 206408
i H
Data 2 20008
H
Redistribution | =
I Volume e .
oo [} l ) Ssoc [ IR
icatior "
== Ea W App N ! . 008400
BB WS Mpergph GphRewrt St SticGraph Communication Hypergraph GraphRepart _ Static  Static Graph
Repart Hypergraph Repart Hypergraph
J— Volume Reparttioning Method

808400

Time (secs) 810600

g 80500

)

i I Repartitioning st

«

F 50600

£
1060 2 3.06400
& 208400

£ Loem

w1 00600
9 HEC Hpewoh  GuhRgat  Swic SulicGp Hypergraph GraphRepart  Static  Static Graph
Repat Hypergaph Repart Hypergraph

e st Reparttoning Method

Slide 94
Sandia
: Repartitioning Experiments ) .

* Experiments with 64 parts on 64 processors.
* Dynamically adjust weights in data to simulate,

say, adaptive mesh refinement.
* Repartition.
* Measure repartitioning time and

total communication volume:

Data redistribution volume
+ Application communication volume

Total communication volume

Slide 96
i
Summary Ut

* No one-size-fits-all solutions for partitioning.
- Different methods for different applications
— Geometric vs. combinatorial/topological
— Static vs. dynamic problem
« Zoltan toolkit has it all (almost...)
— Provides collection of load-balance methods
— Also provides other common parallel services

— Frees the application developer to focus on his/her
specialty area

— Easy to test and compare different methods

24

24



-~ ; v Slide 97 v Slide 98

. LED M,
For More Information... lbortaes The End Ittt

» Zoltan Home Page
— http://lwww.cs.sandia.gov/Zoltan
— User’s and Developer’s Guides
— Download Zoltan software under GNU LGPL.

* Email:
— {egboman,kddevin}@sandia.gov

%‘ Example Hypergraph @“”:fd:g }c Example Hypergraph é‘;:""
National National

Callbacks e Callbacks e

void ZOLTAN_HG_CS_FN(void *data, int num_gid_entries,

int nvtxedge, int npins, int format,

ZOLTAN_ID_ PTR vtxedge GID, int *vtxedge ptr, ZOLTAN ID PTR pin_GID,
int *ierr);

void ZOLTAN_HG_SIZE_CS_FN(void *data, int *num_lists, int *num_pins,
int *format, int *ierr);

Output from Application on Proc 0: Vertices Proc 0 Input from Zoltan: Vertices
num_lists = 2 =
num_pins = 6 Proc 0 | Proc 1 :;:;idgeﬁ_ zors Proc 0} Proc 1
format = ZOLTAN_COMPRESSED_VERTEX format = ZOLTAN_COMPRESSED_VERTEX or
(owned non-zeros per vertex) A|B|C|D ZOLTAN_COMPRESSED_EDGE A|B|C|D
jerr = ZOLTAN_OK
oR al X X Output from Application on Proc O: a|Xx X
0 if (format = ZOLTAN_COMPRESSED_VERTEX) n
o g b X X vixedge_GID = {A, B} 5 b X X
Output from Application on Proc 0: BT | vtxedge_ptr = {0, 3} ©
num_Tlists = 5 ¢ c X X pin_GID = {a, e, f, b, d, f} g c X X
num_pins = 6 o if (format = ZOLTAN_COMPRESSED_EDGE) ]
format = ZOLTAN_COMPRESSED_EDGE % d X X vtxedge_GID = {a, b, d, e, f} % d X X
(owned non-zeros per edge) I — vtxedge_ptr = {0, 1, 2, 3, 4} T
jerr = ZOLTAN_OK e|X X X pin_GID = {A, B, B, A, A, B} e| X X X
jerr = ZOLTAN_OK
f|xX X X X f| X X X X




