1D Array class for any type T
2D Array class for any type T
Header file for the Multivariate PC class.
Stores data of any type T in a 1D array.
Definition Array1D.h:61
Stores data of any type T in a 2D array.
Definition Array2D.h:60
Class for Gaussian processes.
Definition gproc.h:41
Array1D< double > bhat_
Definition gproc.h:159
Array1D< double > ydata_
ydata array
Definition gproc.h:113
void getVst(Array2D< double > &vst)
Get , an auxiliary matrix.
Definition gproc.h:86
Array2D< double > Vst_
Definition gproc.h:158
void EvalGP(Array2D< double > &xgrid, string msc, Array1D< double > &mst)
Evaluate the Gaussian Process at a given grid msc controls whether only mean will be computed,...
Definition gproc.cpp:205
Array2D< double > Ht_
Definition gproc.h:151
double be_
Prior parameter .
Definition gproc.h:127
void BuildGP()
Build Gaussian Process regressor, i.e. compute internally all necessary matrices and vectors that des...
Definition gproc.cpp:99
void getCov(Array2D< double > &cov)
Get the posterior covariance matrix.
Definition gproc.h:92
void getParam(Array1D< double > ¶m)
Get the roughness parameters.
Definition gproc.h:90
void setCorrParam(Array1D< double > param)
Set the roughness parameter vector.
Definition gproc.h:55
void findBestCorrParam()
Function to find the best values for roughness parameters.
Definition gproc.cpp:511
Array2D< double > xdata_
xdata array
Definition gproc.h:111
Array2D< double > A_
Definition gproc.h:152
Array1D< double > HtAinvd_
Definition gproc.h:155
void SetupPrior()
Setup the prior.
Definition gproc.cpp:68
Array2D< double > AinvH_
Definition gproc.h:156
double sig2hat_
Posterior variance factor.
Definition gproc.h:129
double getSig2hat() const
Get Sigma-hat-squared, i.e. the posterior variance factor.
Definition gproc.h:84
string covType_
Covariance type, only 'SqExp' implemented so far.
Definition gproc.h:136
void BuildGP_inv()
Build Gaussian Process regressor, i.e. compute internally all necessary matrices and vectors that des...
Definition gproc.cpp:155
Array1D< double > Vinvz_
Definition gproc.h:154
int getNPC() const
Get the number of basis terms in the trend.
Definition gproc.h:78
Gproc(const string covtype, PCSet *PCModel, Array1D< double > ¶m)
Constructor: initialize with covariance type, trend function basis and roughness parameter vector.
Definition gproc.cpp:52
void getA(Array2D< double > &acor)
Get the correlation matrix .
Definition gproc.h:88
Array2D< double > Vstinv_
Definition gproc.h:163
Array1D< double > Ainvd_
Definition gproc.h:153
void getXYCov(Array2D< double > &xgrid, Array2D< double > &xycov)
Get the covariance in a different format, with the x,x' values.
Definition gproc.cpp:435
void getVar(Array1D< double > &var)
Get the posterior variance vector.
Definition gproc.h:94
Array2D< double > Ainv_
Definition gproc.h:152
int ndim_
Dimensionality.
Definition gproc.h:134
void computeDataCov_(Array2D< double > &xdata, Array1D< double > ¶m, Array2D< double > &A)
Compute the data covariance .
Definition gproc.cpp:489
Array1D< double > yHbhat_
Definition gproc.h:161
Array2D< double > H_
Auxiliary matrices or vectors, see the UQTk Manual.
Definition gproc.h:151
Array2D< double > Vinv_
Inverse of the mean trend coefficient prior covariance.
Definition gproc.h:120
void getSttPars(Array1D< double > &sttmat)
Get the Student-t parameters.
Definition gproc.cpp:418
int npc_
Number of bases in the mean trend.
Definition gproc.h:118
double covariance(Array1D< double > &x1, Array1D< double > &x2, Array1D< double > ¶m)
Prior covariance function.
Definition gproc.cpp:460
Array1D< double > var_
Variance of the Student-t posterior.
Definition gproc.h:143
int getNpt() const
Get the number of data points.
Definition gproc.h:74
Array1D< double > param_
Roughness parameter vector.
Definition gproc.h:147
double getBe() const
Get beta parameter.
Definition gproc.h:82
Array1D< double > Hbhat_
Definition gproc.h:160
double al_
Prior parameter .
Definition gproc.h:125
~Gproc()
Destructor: cleans up all memory and destroys object.
Definition gproc.h:48
void EvalGP_inv(Array2D< double > &xgrid, string msc, Array1D< double > &mst)
Evaluate the Gaussian Process at a given grid msc controls whether only mean will be computed,...
Definition gproc.cpp:328
int npt_
Number of data points.
Definition gproc.h:132
Array1D< double > AinvyHbhat_
Definition gproc.h:162
Array2D< double > cov_
Covariance of the Student-t posterior.
Definition gproc.h:145
Array1D< double > z_
Prior mean of the mean trend.
Definition gproc.h:122
Array1D< double > dataVar_
Data noise 'nugget'.
Definition gproc.h:115
int getNdim() const
Get the dimensionality.
Definition gproc.h:76
PCSet * PCModel_
Basis set for the trend function.
Definition gproc.h:138
double getAl() const
Get alpha parameter.
Definition gproc.h:80
Array1D< double > mst_
Mean of the Student-t posterior.
Definition gproc.h:141
void SetupData(Array2D< double > &xdata, Array1D< double > &ydata, Array1D< double > &datavar)
Setup the data.
Definition gproc.cpp:87
Array2D< double > HtAinvH_
Definition gproc.h:157
Defines and initializes PC basis function set and provides functions to manipulate PC expansions defi...
Definition PCSet.h:73
static double x1[]
Definition gkpclib.cpp:36