|
UQTk: Uncertainty Quantification Toolkit 3.1.5
|
posterior evaluation with various likelihood and prior options More...
#include <post.h>
Public Member Functions | |
| Post () | |
| Constructor. | |
| ~Post () | |
| Destructor. | |
| void | setData (Array2D< double > &xdata, Array2D< double > &ydata) |
| Set the x- and y-data. | |
| void | setData (Array2D< double > &xdata, Array1D< Array1D< double > > &ydata) |
| Set the x- and y-data, for the case when each datapoint have different number of measurements. | |
| void | setDataNoise (Array1D< double > &sigma) |
| Set the magnitude of data noise. | |
| void | inferDataNoise () |
| Indicate inference of data noise stdev. | |
| void | inferLogDataNoise () |
| Indicate inference of log of data noise stdev. | |
| Array1D< double > | dataSigma (double m_last) |
| Get data noise, whether inferred or fixed. | |
| void | setModel (Array1D< Array2D< double >(*)(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *) > forwardFuncs, Array2D< double > &fixindnom, void *funcInfo) |
| Set a pointer to the forward model f(p,x) | |
| void | setModelRVinput (int pdim, int order, Array1D< int > &rndInd, string pdfType, string pcType) |
| Set model input parameters' randomization scheme. | |
| int | getChainDim () |
| Get the dimensionailty of the posterior function. | |
| void | setPrior (string priorType, double priora, double priorb) |
| Set the prior type and its parameters. | |
| double | evalLogPrior (Array1D< double > &m) |
| Evaluate log-prior. | |
| Array2D< double > | getParamPCcf (Array1D< double > &m) |
| Extract parameter PC coefficients from a posterior input. | |
| Array2D< double > | samParam (Array1D< double > &m, int ns) |
| Sample model parameters given posterior input. | |
| void | momParam (Array1D< double > &m, Array1D< double > &parMean, Array1D< double > &parVar, bool covFlag, Array2D< double > &parCov) |
| Get moments of parameters given posterior input. | |
| Array2D< double > | samForwardFcn (Array2D< double >(*forwardFunc)(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *), Array1D< double > &m, Array2D< double > &xgrid, int ns) |
| Sample forward function at a given grid for given posterior input. | |
| void | momForwardFcn (Array2D< double >(*forwardFunc)(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *), Array1D< double > &m, Array2D< double > &xgrid, Array1D< double > &fcnMean, Array1D< double > &fcnVar, bool covflag, Array2D< double > &fcnCov) |
| Get moments of forward function at a given grid for given posterior input. | |
| void | momForwardFcn (Array1D< double > &m, Array2D< double > &xgrid, Array1D< double > &fcnMean, Array1D< double > &fcnVar, bool covflag, Array2D< double > &fcnCov) |
| Get moments of composite forward function at a given grid for given posterior input. | |
| virtual double | evalLogLik (Array1D< double > &m) |
| Dummy evaluation of log-likelihood. | |
Protected Attributes | |
| Array2D< double > | xData_ |
| xdata | |
| Array1D< Array1D< double > > | yData_ |
| ydata | |
| Array1D< double > | yDatam_ |
| ydata averaged per measurement | |
| int | nData_ |
| Number of data points. | |
| Array1D< int > | nEachs_ |
| Number of samples at each input. | |
| int | xDim_ |
| Dimensionality of x-space. | |
| int | pDim_ |
| Dimensionality of parameter space (p-space) | |
| int | chDim_ |
| Dimensionality of posterior input. | |
| bool | inferDataNoise_ |
| Flag for data noise inference. | |
| bool | dataNoiseLogFlag_ |
| Flag to check if data noise logarithm is used. | |
| Array1D< double > | dataNoiseSig_ |
| Data noise stdev. | |
| Array1D< Array2D< double >(*)(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *) > | forwardFcns_ |
| Pointer to the forward function f(p,x) | |
| void * | funcinfo_ |
| Auxiliary information for function evaluation. | |
| int | extraInferredParams_ |
| Number of extra inferred parameters, such as data noise or Koh variance. | |
| int | ncat_ |
| Number of categories. | |
| Mrv * | Mrv_ |
| Pointer to a multivariate PC RV object. | |
| Array1D< int > | rndInd_ |
| Indices of randomized inputs. | |
| Array2D< double > | fixIndNom_ |
| Indices and nominal values for fixed inputs. | |
| Array1D< double > | lower_ |
| Lower and upper bounds on parameters. | |
| Array1D< double > | upper_ |
| string | pdfType_ |
| Input parameter PDF type. | |
| string | rvpcType_ |
| PC type parameter for the r.v. | |
| string | priorType_ |
| Prior type. | |
| double | priora_ |
| Prior parameter #1. | |
| double | priorb_ |
| Prior parameter #2. | |
Private Attributes | |
| int | verbosity_ |
| Verbosity level. | |
posterior evaluation with various likelihood and prior options
| Post::Post | ( | ) |
Constructor.
|
inline |
Destructor.
| Array1D< double > Post::dataSigma | ( | double | m_last | ) |
Get data noise, whether inferred or fixed.
|
inlinevirtual |
Dummy evaluation of log-likelihood.
Reimplemented in Lik_ABC, Lik_ABCm, Lik_Classical, Lik_Eov, Lik_Full, Lik_GausMarg, Lik_GausMargD, Lik_Koh, Lik_Marg, and Lik_MVN.
| double Post::evalLogPrior | ( | Array1D< double > & | m | ) |
Evaluate log-prior.
| int Post::getChainDim | ( | ) |
Get the dimensionailty of the posterior function.
Extract parameter PC coefficients from a posterior input.
| void Post::inferDataNoise | ( | ) |
Indicate inference of data noise stdev.
| void Post::inferLogDataNoise | ( | ) |
Indicate inference of log of data noise stdev.
| void Post::momForwardFcn | ( | Array1D< double > & | m, |
| Array2D< double > & | xgrid, | ||
| Array1D< double > & | fcnMean, | ||
| Array1D< double > & | fcnVar, | ||
| bool | covflag, | ||
| Array2D< double > & | fcnCov ) |
Get moments of composite forward function at a given grid for given posterior input.
| void Post::momForwardFcn | ( | Array2D< double >(* | forwardFunc )(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *), |
| Array1D< double > & | m, | ||
| Array2D< double > & | xgrid, | ||
| Array1D< double > & | fcnMean, | ||
| Array1D< double > & | fcnVar, | ||
| bool | covflag, | ||
| Array2D< double > & | fcnCov ) |
Get moments of forward function at a given grid for given posterior input.
| void Post::momParam | ( | Array1D< double > & | m, |
| Array1D< double > & | parMean, | ||
| Array1D< double > & | parVar, | ||
| bool | covFlag, | ||
| Array2D< double > & | parCov ) |
Get moments of parameters given posterior input.
| Array2D< double > Post::samForwardFcn | ( | Array2D< double >(* | forwardFunc )(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *), |
| Array1D< double > & | m, | ||
| Array2D< double > & | xgrid, | ||
| int | ns ) |
Sample forward function at a given grid for given posterior input.
Sample model parameters given posterior input.
Set the x- and y-data, for the case when each datapoint have different number of measurements.
| void Post::setDataNoise | ( | Array1D< double > & | sigma | ) |
Set the magnitude of data noise.
| void Post::setModel | ( | Array1D< Array2D< double >(* | forwardFuncs )(Array2D< double > &, Array2D< double > &, Array2D< double > &, void *) >, |
| Array2D< double > & | fixindnom, | ||
| void * | funcInfo ) |
Set a pointer to the forward model f(p,x)
| void Post::setModelRVinput | ( | int | pdim, |
| int | order, | ||
| Array1D< int > & | rndInd, | ||
| string | pdfType, | ||
| string | pcType ) |
Set model input parameters' randomization scheme.
| void Post::setPrior | ( | string | priorType, |
| double | priora, | ||
| double | priorb ) |
Set the prior type and its parameters.
|
protected |
Dimensionality of posterior input.
|
protected |
Flag to check if data noise logarithm is used.
|
protected |
Data noise stdev.
|
protected |
Number of extra inferred parameters, such as data noise or Koh variance.
|
protected |
Indices and nominal values for fixed inputs.
|
protected |
Pointer to the forward function f(p,x)
|
protected |
Auxiliary information for function evaluation.
|
protected |
Flag for data noise inference.
|
protected |
Lower and upper bounds on parameters.
|
protected |
Pointer to a multivariate PC RV object.
|
protected |
Number of categories.
|
protected |
Number of data points.
|
protected |
Number of samples at each input.
|
protected |
Input parameter PDF type.
|
protected |
Dimensionality of parameter space (p-space)
|
protected |
Prior parameter #1.
|
protected |
Prior parameter #2.
|
protected |
Prior type.
|
protected |
Indices of randomized inputs.
|
protected |
PC type parameter for the r.v.
|
protected |
|
private |
Verbosity level.
|
protected |
xdata
|
protected |
Dimensionality of x-space.
|
protected |
ydata averaged per measurement