
SANDIA REPORT
SAND2023-14971

Printed December, 2023

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

UQTk Version 3.1.4 User Manual
Khachik Sargsyan, Cosmin Safta, Caitlin Curry, Luke Boll,
Katherine Johnston, Mohammad Khalil, Kenny Chowdhary, Prashant Rai,
Pieterjan Robbe, Tiernan Casey, Xiaoshu Zeng, Bert Debusschere

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods

D
E

P
A

R
T

M
ENT OF EN

E
R

G
Y

• •U
N

I
T

E
D

STATES OF
A

M

E
R

I
C

A

2

ABSTRACT
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. Version 3.1.4 offers intrusive and non-intrusive methods for propagating
input uncertainties through computational models, tools for sensitivity analysis, methods for sparse
surrogate construction, and Bayesian inference tools for inferring parameters from experimental data.
This manual discusses the download and installation process for UQTk, provides pointers to the UQ
methods used in the toolkit, and describes some of the examples provided with the toolkit.

3

ACKNOWLEDGMENT

This work was supported in large part by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research, Scientific Discovery through the Advanced Computing
(SciDAC) program via the FASTMath Institute.

UQTk has been, and continues to be, the product of collaboration between many people. The key
authors of UQTk are (alphabetical by first name):

• Bert Debusschere

• Caitlin Curry

• Cosmin Safta

• Katherine Johnston

• Kenny Chowdhary

• Khachik Sargsyan

• Luke Boll

• Mohammad Khalil

• Pieterjan Robbe

• Prashant Rai

• Tiernan Casey

• Xiaoshu Zeng

Beyond the authors listed above, there is a long and continually growing list of coworkers, students and
visitors who have contributed to UQTk over the years. This list includes, but is not limited to
(alphabetical by first name):

• Habib Najm

• Helgi Adalsteinsson

• Linus Seelinger

• Majid Latif

• Olivier Le Maître

• Omar Knio

5

• Roger Ghanem

• Sarah Castorena

• Sarah de Bord

• Xun Huan

Further, we are grateful to all the users of UQTk who through their questions and suggestions are
continually helping us to improve the software.

6

CONTENTS

Revision History 9

1. Overview 11

2. Download and Installation 13
2.1. Requirements . 13
2.2. Download . 13
2.3. Directory Structure . 13
2.4. External Software and Libraries . 15

2.4.1. Required . 15
2.4.2. Optional . 15

2.5. Installation . 16
2.5.1. Configuration flags . 16
2.5.2. Installation example . 17
2.5.3. Setting up External Libraries . 20

3. Theory and Conventions 23
3.1. Polynomial Chaos Expansions . 23
3.2. Polynomial Chaos Surrogate . 24

3.2.1. Construction methods . 25
3.2.2. Compressive sensing . 28

3.3. Weighted iterative CS for basis selection . 30
3.4. Global sensitivity analysis . 36

4. Source Code Description 39
4.1. C++ Libraries . 39

4.1.1. mcmc: . 39
4.1.2. amcmc: . 43
4.1.3. tmcmc: . 44
4.1.4. ss: . 45
4.1.5. mala: . 46
4.1.6. mmala: . 47

4.2. C++ Applications . 47
4.2.1. dfi: . 48
4.2.2. generate_quad: . 51
4.2.3. gen_mi: . 52
4.2.4. gp_regr: . 53

7

4.2.5. lr_regr: . 53
4.2.6. model_inf: . 57
4.2.7. pce_eval: . 62
4.2.8. pce_quad: . 62
4.2.9. pce_resp: . 65
4.2.10. pce_rv: . 65
4.2.11. pce_sens: . 66
4.2.12. pdf_cl: . 66
4.2.13. regression: . 66
4.2.14. sens: . 68

4.3. Python Modules . 69
4.3.1. Polynomial Chaos Expansion Tools . 69
4.3.2. Bayesian Evidence Estimation . 69

5. Examples 73
5.1. Elementary Operations . 73
5.2. Polynomial Fitting . 76
5.3. Forward Propagation of Uncertainty . 81
5.4. Numerical Integration . 88
5.5. Forward Propagation of Uncertainty with PyUQTk . 97
5.6. Surrogate Construction for Genz Functions with PyUQTk . 97
5.7. Sparse Basis Selection with PyUQTk . 98
5.8. Forward Propagation of Uncertainty Using Basis Adaptation . 98
5.9. Bayesian Inference of a Line . 105
5.10. Sampling of Multimodal Posterior PDFs using TMCMC . 108
5.11. Sampling using UM-Bridge . 111
5.12. Forward Propagation of Uncertainties, Surrogate Construction and Global Sensitivity

Analysis . 111
5.13. Global Sensitivity Analysis via Sampling . 118
5.14. Karhunen-Loève Expansion of a Stochastic Process . 123

6. Support 139

References 141

Distribution 145

8

REVISION HISTORY

This manual goes with UQTk version 3.1.4. Previous releases and release dates are listed below along
with the report numbers of the corresponding manuals.

• UQTk 3.1.4: 12/21/23, SAND2023-14971

• UQTk 3.1.3: 02/20/23, SAND2023-12685

• UQTk 3.1.2: 01/13/22, SAND2022-0377

• UQTk 3.1.1: 03/25/21, SAND2021-3655

• UQTk 3.1.0: 02/28/21, SAND2020-2879

• UQTk 3.0.4: 10/09/17, SAND2017-11051

• UQTk 3.0.3: 05/30/17, SAND2017-5747

• UQTk 3.0.0: 09/16/16, SAND2016-9215

• UQTk 2.1.0: 05/30/14, SAND2014-4968

• UQTk 2.0.0: 10/22/13, SAND2013-9165

9

1. OVERVIEW

The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in
numerical model predictions. In general, uncertainty quantification (UQ) pertains to all aspects that
affect the predictive fidelity of a numerical simulation, from the uncertainty in the experimental data
that was used to inform the parameters of a chosen model, and the propagation of uncertain parameters
and boundary conditions through that model, to the choice of the model itself.

In particular, UQTk provides implementations of many probabilistic approaches for UQ in this general
context. Version 3.1.4 offers intrusive and non-intrusive methods for propagating input uncertainties
through computational models, tools for sensitivity analysis, methods for sparse surrogate construction,
and Bayesian inference tools for inferring parameters from experimental data.

The main objective of UQTk is to make these methods available to the broader scientific community
for the purposes of algorithmic development in UQ or educational use. The most direct way to use the
libraries is to link to them directly from C++ programs. Alternatively, command line apps are provided
that allow access to the UQTk functionality from the command line. A comprehensive Python
interface is also provided.

In the examples section, many scripts for common UQ operations are provided, which can be modified
to fit the users’ purposes using existing numerical simulation codes as a black-box.

The next chapter in this manual discusses the download and installation process for UQTk, followed by
some pointers to the UQ methods used in the toolkit, and a description of some of the examples
provided with the toolkit.

11

2. DOWNLOAD AND INSTALLATION

2.1. REQUIREMENTS

The core UQTk libraries are written in C++, with some dependencies on FORTRAN numerical
libraries. As such, to use UQTk, a compatible C++ and FORTRAN compiler will be needed. UQTk is
installed and built most naturally on a Unix-like platform, and has been tested on Mac OS X and Linux.
Installation and use on Windows machines has not been tested extensively.

Many of the examples rely on Python, including NumPy, SciPy, and matplotlib packages for
postprocessing and graphing. The UQTk Python utilities are compatible with both Python 2.7.x and
3.7.x or above. However, Python version version 3.7.x or above with compatible NumPy, SciPy, and
matplotlib is recommended. Further the use of XML for input files requires the Expat XML parser
library to be installed on your system. Note, if you will be linking the core UQTk libraries directly to
your own codes, and do not plan on using the UQTk examples, then those additional dependencies are
not required.

2.2. DOWNLOAD

The most recent version of UQTk, currently 3.1.4, can be cloned from github at:
https://github.com/sandialabs/UQTk

2.3. DIRECTORY STRUCTURE

After cloning the git repo, you will find the following directories in the repo:

config Configuration files
cpp C++ source code

app C++ apps
lib C++ libraries
tests Tests for C++ libraries

dep External dependencies
ann Approximate Nearest Neighbors library
blas Netlib’s BLAS library (linear algebra)
dsfmt dsfmt library (random number generators)

13

https://github.com/sandialabs/UQTk

figtree Fast Improved Gauss Transform library
lapack Netlib’s LAPACK library (linear algebra)
lbfgs lbfgs library (optimization)
slatec Netlib’s SLATEC library (general purpose math)

doc Documentation
examples Examples with C++ libraries and apps

bare_bcs Sparse signal reconstruction for arbitrary basis
d_spring_series Springs in series to demonstrate dimensionality reduction

through basis adaptation
dfi Example of Data Free Inference (DFI)
dfi_app Example of Data Free Inference (DFI) with command line app
heat_transfer_window Forward propagation with a heat transfer example
iuq surrogate-enabled inverse UQ workflow
kle_ex1 Karhunen-Loeve expansion example
line_infer calibrate parameters of a linear model
muq interface between MUQ and UQTk
num_integ quadrature and Monte Carlo integrations
ops operations with Polynomial Chaos expansions
pce_bcs construct sparse Polynomial Chaos expansions
polynomial polynomial model fit with MCMC
sensMC Monte-Carlo based sensitivity index computation
surf_rxn surface reaction example for forward and inverse UQ
surrogate_genz Jupyter notebooks for various surrogate methods through PyUQTk
tmcmc_bimodal use TMCMC to sample from a 3-dimensional posterior

that is aproduct of a Gaussian prior and a bimodal likelihood
uqpc construct Polynomial Chaos surrogates for multiple

outputs/functions
PyUQTk Python scripts and interface to C++ libraries

bcs interface to Bayesian compressive sensing library
inference Python Markov Chain Monte Carlo (MCMC) scripts
kle interface to Karhunen-Loeve expansion class
mcmc interface to MCMC class
pce interface to Polynomial Chaos expansion class
plotting Python plotting scripts
pytests Python unit tests
quad interface to Quad class
sens Python global sensitivity analysis scripts
tmcmc Interface to tMCMC class
tools interface to UQTk tools
uqtkarray interface to array class
utils interface to UQTk utils

14

2.4. EXTERNAL SOFTWARE AND LIBRARIES

2.4.1. Required

The following software and libraries are required to compile UQTK

1. C++/Fortran compilers. Please note that C++ and Fortran compilers need to be compatible
with each other. Most of our development happens on either Mac OS X or Linux with the GNU
Compiler Suite. For OS X these compilers were installed either using MacPorts, or Homebrew,
or directly built from source code. We have also successfully compiled with Intel compilers on
Linux.

2. CMake. We switched to a CMake-based build/install configuration in version 3.0. The
configuration files require a CMake version 3.1 or higher.

3. Expat library. The Expat XML Parser is installed together with other XCode tools on OS X. It
is also fairly common on Linux systems, with installation scripts available for several platforms.
Alternatively this library can be downloaded from http://expat.sourceforge.net

4. LAPACK and BLAS. UQTk will use system installed versions of LAPACK and BLAS if
possible. If not found, UQTk will use a self contained version.

5. SUNDIALS. UQTk requires SUNDIALS version 6.0.0 or higher (older versions will not work.)
If SUNDIALS is not yet installed on your system, the UQTk build process will automatically
download it from https://github.com/LLNL/sundials, configure it, and build it. To use a
version of SUNDIALS that is already installed, specify the path to it as indicated in the
installation section below.

2.4.2. Optional

The following additional software and libraries are not required to compile UQTK, but are necessary
for the full Python interface to UQTk called PyUQTk.

1. Python, NumPy, SciPy, and Matplotlib. We have successfully compiled PyUQTk with
Python 2.7.x, 3.7.x, and 3.9.x Note that it is important that the Python, NumPy, SciPy, and
Matplotlib packages be compatible with each other. Sometimes, your OS may come with a
default version of Python but not SciPy or NumPy. When adding those packages afterwards, it
can be hard to get them to all be compatible with each other. To avoid issues, it is recommended
to install Python, NumPy, and SciPy all from the same package manager (e.g. get them all
through MacPorts or Homebrew on OS X).

2. Pybind11. PyUQTk has been tested with Pybind 2.6.2. Instructions for the installation of
Pybind11 can be found at: Pybind Installation Instructions. It can be installed via pip, homebrew,
or macports.

15

http://expat.sourceforge.net
https://github.com/LLNL/sundials
https://pybind11.readthedocs.io/en/stable/installing.html

2.5. INSTALLATION

We define the following keywords to simplify build and install descriptions in this section.

• sourcedir - directory containing UQTk source files, i.e. the top level directory mentioned in
Section 2.3.

• builddir - directory where UQTk library and its dependencies will be built. This directory
should not be the same as sourcedir.

• installdir - directory where UQTk libraries are installed and header and script files are copied

The following set of commands, on a high level, generates the build structure, compiles, tests, and
installs UQTk:

(1) >mkdir builddir ; cd builddir
(2) > cmake<flags> sourcedir
(3) >make
(4) > ctest
(5) >make install

The next sections explain some of the finer details in this process.

2.5.1. Configuration flags

A (partial) list of configuration flags that can be set at step (2) above is provided below:

• CMAKE_INSTALL_PREFIX : set installdir.

• CMAKE_C_COMPILER : C compiler

• CMAKE_CXX_COMPILER : C++ compiler

• CMAKE_Fortran_COMPILER : Fortran compiler

• CMAKE_SUNDIALS_DIR : Path to install directory for SUNDIALS

• IntelLibPath: For Intel compilers: path to libraries if different than default system paths

• PyUQTk : If ON, then build PyUQTk’s Python to C++ interface. Default: OFF

• PYTHON_EXECUTABLE : Path to the Python program

• PYTHON_LIBRARY : Path to the Python library

• pybind11_DIR:FILEPATH : Path to the directory for Pybind11

16

Several pre-set config files are available in the “sourcedir/config” directory. These scripts set the
configuration flags mentioned above for some common situations and can be used as a template for
your platform. Some of these shell scripts also accept arguments, e.g. config-options.sh, to switch
between several configurations. Type, for example config-options.sh --help to obtain a list of
options. For a basic setup using default system settings for GNU compilers, see “config-gcc-base.sh”.
The user is encouraged to copy of one these script files and edit to match the desired configuration.
Then, step no. 2 above (cmake<flags> sourcedir) should be replaced by a command running a
particular shell script from the command line, e.g.

(2) > ../UQTk/config/config-gcc-base.sh

In this example, the configuration script is run from the build directory, while it is assumed that the
configuration script still sits in the configuration directory of the UQTk source code tree.

If all goes well, there should be no errors. Two log files in the “config” directory contain the output for
Steps (2) and (3) above, for compilation and installation on OS X 10.9.5 using GNU 4.8.3 compilers:

(2) >
../UQTk/config/config-options.sh -c gnu -p ON >& cmake-mac-gnu.log

(3) > make >& make-gnu.log ; make install >& make-gnu.log

After compilation ends, the installdir will be contain the following sub-directories:

PyUQTk Python scripts and, if PyUQTk=ON, interface to C++ classes
bin app’s binaries
cpp tests for C++ libraries
examples examples on using UQTk
include UQTk header files
lib UQTk libraries, including for external dependencies

To use the UQTk libraries, your program should link in the libraries in installdir/lib and add
installdir/include/uqtk and installdir/include/dep directories to the compiler include
path. The apps are standalone programs that perform UQ operations, such as response surface
construction, or sampling from random variables. For more details, see the Examples section.

2.5.2. Installation example

In this section, we will take the user through the installation of UQTk and PyUQTk on a Mac OSX
10.11 system with the GNU compilers. The following example uses GNU 6.1 installed under
/opt/local/gcc61. For the compilation of PyUQTk, we are using Python version 2.7.10 with SciPy
0.14.0, Matplotlib 1.4.2, NumPy 1.8.1, and Pybind 2.6.2.

It will be cleaner to keep the source directory separate from the build and install directories. For
simplicity, we will create a UQTk-build directory in the same parent folder as the source directory,
UQTk . While in the source directory, create the build directory and cd into it:

17

$ mkdir ../UQTk-build
$ cd ../UQTk-build

It is important to note that the CMake compilation uses the cc and c++ defined compilers by default.
This may not be the compilers you want when installing UQTk. Luckily, CMake allows you to specify
which compilers you want, similar to autoconf. Thus, we type

$ cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \
-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

Note that this will configure CMake to compile UQTk without the Python interface. Also, we specified
the installation directory to be UQTk-install in the same parent directory at UQTk and UQTk-build.
Figure 2-1 shows what CMake prints to the screen. To turn on the Python interface just set the CMake

Figure 2-1. CMake configuration without the Python interface.

flag, PyUQTk, on, i.e.,

$ cmake -DPyUQTk=ON \
-DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \
-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 ../UQTk

18

Figure 2-2. CMake configuration with the Python interface.

Figure 2-2 shows the additional output to screen after the Python interface flag is turned on.

If the CMake command has run without error, you are now ready to build UQTk. While in the build
directory, type

$ make

or, for a faster compilation using N parallel threads,

$ make -j N

where one can replace N with the number of virtual cores on your machine, e.g. 8. This will build in the
UQTK-build/ directory. The screen should look similar to Figure 2-3 with or without the Python
interface when building.

Figure 2-3. Start and end of build without Python interface.

To verify that the build was successful, run the ctest command from the UQTK-build/ directory to
run the C++ and Python (only if building PyUQTk) test scripts.

$ ctest

The output should look similar to Figure 2-4.

If all looks good, you are now ready to install UQTk. While in the build directory, type

19

Figure 2-4. Result of ctest after successful build and install. Note that if you do not
build PyUQTk, those tests will not be run.

$ make install

which installs the libraries, headers, apps, examples, and such in the specified installation directory.
Additionally, if you are building the Python interface, the install command will copy over the python
scripts and Pybind modules (*.so) over to PyUQTk/.

As a reminder, commonly used configure options are illustrated in the scripts that are provided in the
“sourcedir/config” folder.

2.5.3. Setting up External Libraries

2.5.3.1. Python

Cmake will very often find the correct python path. However, sometimes cmake cannot identify the
correct path and may fail to build or fail the python tests. In this case, you can specify the python library
filepath as in the example below.

If the Python tests fail, even though the compilation went well, a common issue is that the configure
script may have found a different version of the Python libraries then the one that is used when you
issue Python from the command line. To avoid this, specify the path to your Python program and
libraries to the configuration process. For example (on OS X):
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0
-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \
-DPYTHON_LIBRARY:FILEPATH=/opt/local/Library/Frameworks/Python.framework/Versions/3.7/lib/libpython3.7.dylib \
-DPyUQTk=ON \
../UQTk

20

2.5.3.2. SUNDIALS

If you would like to use a version of SUNDIALS that you have already installed on your system (rather
than have UQTk download the latest version from github), use the variable CMAKE_SUNDIALS_DIR to
specify the path to its install folder. For example, your config script may look as follows:

cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../install \
-DCMAKE_SUNDIALS_DIR=/Users/myusername/Packages/SUNDIALS/install \
-DCMAKE_Fortran_COMPILER=gfortran \
-DCMAKE_C_COMPILER=gcc \
-DCMAKE_CXX_COMPILER=g++ \
-DPyUQTk=ON \
../UQTk

Note, if your UQTk configuration links to the dynamically linked version of the SUNDIALS library,
you will also need to add the location of those libraries to your dynamic library path on your platform
(e.g. the DYLD_LIBRARY_PATH environment variable on Mac OS X).

2.5.3.3. Pybind11

Pybind11 is a requirement for the usage of the PyUQTk modules. Cmake will often find the correct
Pybind path. However, sometimes cmake cannot identify the correct path and may fail to build or fail
the python tests. In this case, you can specify the Pybind11 library filepath as in the example below.
Additionally, if errors such as, fatal error:pybind11/pybind11.h: No such file or directory, occur, ensure
that Pybind11 is installed in the same directory as the python library being used by CMake. For example,
your config script may look as follows:
PYTHON_DIR=/opt/local/Library/Frameworks/Python.framework/Versions/3.9/lib
cmake -DCMAKE_INSTALL_PREFIX:PATH=$PWD/../UQTk-install \

-DCMAKE_Fortran_COMPILER=/opt/local/gcc61/bin/gfortran-6.1.0 \
-DCMAKE_C_COMPILER=/opt/local/gcc61/bin/gcc-6.1.0 \
-DCMAKE_CXX_COMPILER=/opt/local/gcc61/bin/g++-6.1.0 \
-DPYTHON_EXECUTABLE:FILEPATH=/opt/local/bin/python \
-DPYTHON_LIBRARY:FILEPATH=$PYTHON_DIR/libpython3.9.dylib \
-Dpybind11_DIR:FILEPATH=$PYTHON_DIR/python3.9/site-packages/pybind11/share/cmake/pybind11 \
-DPyUQTk=ON \
../UQTk

Note, some users have found that by installing Pybind11 using pip has made the need for specifying the
Pybind11 path unnecessary. Additionally, after a successful build warnings about weak symbols will
appear. These can be ignored as they do not prevent the correct implementation of the PyUQTk
modules.

21

3. THEORY AND CONVENTIONS

UQTk implements many probabilistic methods found in the literature. For more details on the
methods, please refer to the following papers and books on Polynomial Chaos methods for uncertainty
propagation [11, 34], Karhunen-Loève (KL) expansions [18], numerical quadrature (including sparse
quadrature) [26, 8, 20, 54, 16], Bayesian inference [53, 14, 35], Markov Chain Monte Carlo [15, 19, 22, 23],
Bayesian compressive sensing [1], and the Rosenblatt transformation [42].

Below, some key aspects and conventions of UQTk Polynomial Chaos expansions, surrogate
construction, compressed sensing, and weighted iterative Bayesian Compressed Sensing (wiBCS) are
outlined in order to connect the tools in UQTk to the broader theory.

3.1. POLYNOMIAL CHAOS EXPANSIONS

Polynomial chaos expansions (PCEs) can be defined as follows:

X =
P∑

k=0

ckΨk(ξ1, ..., ξn)

• X: Random variable represented with multi-D PCE

• ck: PC coefficients

• Ψk: Multi-D orthogonal polynomials up to order p

• ξi: Gaussian random variable known as the germ

• n: Dimensionality = number of uncertain model parameters

• P + 1: Number of PC terms = (n+p)!
n!p!

The following are conventions of UQTk PCEs:

• The default ordering of PCE terms in the multi-index in UQTk is the canonical ordering for
total order truncation

• The PC basis functions in UQTk are not normalized

• The Legendre-Uniform PC Basis type is defined on the interval [-1, 1], with weight function 1/2

23

3.2. POLYNOMIAL CHAOS SURROGATE

Consider a forward functionQ = f(λ) that maps the input parameter vector λ = (λ1, . . . , λd) to an
output quantity of interest (QoI). Further, assume each input parameter is defined in a range
λi ∈ [ai, bi], for i = 1, 2, . . . , d. By casting each input as a uniform random variable in its range, we
write

λi =
ai + bi

2
+
bi − ai

2
ξi, (3.1)

where ξ⃗ ∈ [−1, 1]d is a vector of d independent, identically distributed (i.i.d.) uniform random
variables. We look for a polynomial expansion for the outputQ

Q = f(λ(ξ⃗)) ≈
∑
α∈I

cαΨα(ξ⃗) (3.2)

with respect to a set of normalized Legendre polynomials Ψα(ξ⃗). Each multivariate Legendre
polynomial Ψα(ξ⃗) corresponds to a multtindex vector α = (α1, . . . , αd) that defines the polynomial
degrees per univariate Legendre polynomial ψk(ξ) as Ψα(ξ⃗) = ψα1(ξ1)ψα2(ξ2) · · ·ψαd

(ξd). Also, by
convention, the sum of all degrees ||α||1 = α1 + α2 + · · ·+ αd is called the order of the multivariate
polynomial Ψα(ξ⃗). Legendre polynomials are orthogonal with respect to the uniform PDF
πξ⃗(ξ⃗) = 2−d

⟨Ψα(ξ⃗)Ψα′(ξ⃗)⟩ ≡
∫
ξ⃗

Ψα(ξ⃗)Ψα′(ξ⃗)2−ddξ⃗ = 0 if α ̸= α′, (3.3)

and are normalized such that ||Ψα||2 =
∫
ξ⃗
Ψ2

α(ξ⃗)2
−ddξ⃗ = 1.

The selection of the multiindex set I and its sizeK = |I| is a key modeling step and is typically dictated
by the general expected behavior of the forward function f(λ). Some conventional options for
non-adaptive, i.e. a priori, basis selection are listed in Table 3-1.

Muliindex set I Parameters

Total order
∑

i αi ≤ p Total order p

Tensor product αi ≤ pi for all i Order per dimension pi
Lq

∑
i α

q
i ≤ pq Effective order p

Hyperbolic Cross
∏

i(1 + αi) ≤ 1 + p Hyperbolic order p

Table 3-1. Non-adaptive basis selection options.

ViewingQ as a random variable that is induced by the uniform random vector ξ⃗, the expansion (3.2)
belongs to a general class of Polynomial Chaos (PC) expansions [18, 33]. PC expansions serve as
convenient means of representing a large class of random variables, endowed with an efficient
machinery for uncertainty propagation through computational models. As such, one can view Eq.(3.2)
as a PC representation of the output random variableQ as propagated from uniform random inputs λ
through the physical model f(λ).

24

3.2.1. Construction methods

One can directly employ the basis polynomial orthogonality to compute PC coefficients via projection
by

cProj
α = ⟨f(λ(ξ⃗))Ψα(ξ⃗)⟩ =

∫
ξ⃗

f(λ(ξ⃗))Ψα(ξ⃗)2
−ddξ⃗ for all α ∈ I, (3.4)

which minimizes the L2-distance between the function f and its surrogate

cProj = argmin
c

∫
ξ⃗

(
f(λ(ξ⃗))−

∑
α∈I

cαΨα(ξ⃗)

)2

dξ⃗. (3.5)

Note that in Eq. (3.5), as well as in formulae further in this work, we denote the set of all coefficients as
c = {cα}α∈I and call it a PC coefficient vector.

The projection integral in (5.17) is typically computed by quadrature integration

cProj
α ≈

Q∑
q=1

f(λ(ξ⃗(q)))Ψα(ξ⃗
(q))wq, (3.6)

where quadrature point-weight pairs {(ξ⃗(q), wq)}Qq=1 are chosen such that the integration of the
highest-degree polynomial coefficient is sufficiently accurate. If one uses the common, product-grid
quadrature, the number of required function-evaluations grows exponentially with dimension, and
becomes infeasible even for moderate dimensions of d = 5 to 10. For moderate-dimensional problems,
one can use sparse quadrature [16, 2, 21, 60] in order to reduce the number of function evaluations for a
given level of integration accuracy. However, for high-dimensional problems the projection is generally
infeasible, since it requires function evaluations at predefined parameter values λ(ξ⃗(q)) corresponding
to quadrature points, and the number of such evaluations grows rapidly with d. As an alternative,
regression-based approach is employed here, in which one directly minimizes a distance measure
between a set of evaluations of the function f = {f(λ(ξ⃗(n)))}Nn=1 and the surrogate. The evaluations
of the surrogate can be written in a matrix form

gc =

{∑
α∈I

cαΨα(ξ⃗
(n))

}N

n=1

= G⃗c (3.7)

denoting the measurement matrix by G⃗nk = Ψk(ξ⃗
(n)), where k = k(α) is a counting index of the

multiindex set I . The minimization problem can then generally be written as

cRegr = argmin
c

ρ(f , gc), (3.8)

where ρ(u,v) is a distance measure between two vectors u and v. Most commonly, one chooses an ℓ2
distance ρ(f , gc) = ||f − gc||2, leading to a least-squares estimate

cLSQ = argmin
c

N∑
n=1

(
f(λ(ξ⃗(n)))−

∑
α∈I

cαΨα(ξ⃗
(n))

)2

= argmin
c

||f − G⃗c||2 (3.9)

25

that has a closed-form solution
cLSQ = (G⃗T G⃗)−1G⃗Tf . (3.10)

Both projection and regression fall into the category of collocation approaches in which surrogate is
constructed using a finite set of evaluations of f(λ) [60, 61, 35]. In this work, we operate under
assumption that model evaluations are expensive, hence one would like to achieve accurate surrogate
construction with a limited number of model evaluations. In this regard, the regression approach allows
regularization, for example, to build in additional constraints on parameters c via augmenting the
distance measure ρ(·, ·) with an extra term r(c)

cRegulRegr = argmin
c

[ρ(f , gc) + r(c)] . (3.11)

Besides, regression allows direct extension to Bayesian framework, which allows flexibility and
meaningful results even in presence of limited number of evaluations of the expensive forward model
f(λ).

Bayesian regression: Bayesian methods [3, 52, 6] are well-suited to deal with a limited number
and potentially noisy function evaluations. They allow constructing an uncertain surrogate with any
number of samples by describing the uncertainty via posterior probability distribution on PC
coefficient vector c. Besides, Bayesian techniques are efficient in sequential scenarios where the
surrogate is updated online, i.e. as new evaluations of f(λ) arrive [48]. While computationally more
expensive than the simple minimization (3.8), the Bayesian approach puts the construction of the
objective function ρ(f , gc) within a formal probabilistic context where the objective function can be
interpreted as a Bayesian log-likelihood. For example, the ℓ2 or least-squares objective function
corresponds to an i.i.d. Gaussian assumption for the misfit random variable f(λ)− gc(λ). Indeed,
Bayes’ formula in the regression context reads as

Posterior︷ ︸︸ ︷
p(c|D) =

Likelihood︷ ︸︸ ︷
p(D|c)

Prior︷︸︸︷
p(c)

p(D)︸︷︷︸
Evidence

, (3.12)

relating a prior probability distribution on PC surrogate coefficients c to the posterior distribution, via
the likelihood function

LD(c) = p(D|c), (3.13)

which essentially measures the goodness-of-fit of the model training evaluations D = {f} to the
surrogate model evaluations gc for a parameter set c. As far as the estimation of c is concerned, the
evidence p(D) is simply a normalizing factor. The posterior distribution reaches its maximum at the
Maximum a Posteriori (MAP) value. Working with logarithms of the prior and posterior distributions
as well as the likelihood, the MAP value solves the optimization problem

cMAP = argmax
c

log p(c|D) = argmax
c

[logLD(c) + log p(c)] (3.14)

Comparing this formulation with the regularized regression (3.11), we note that (3.14) is equivalent to
the deterministic, regularized regression with the negative log-likelihood − logLD(c) playing the role

26

of an objective function augmented by the regularization term that is the negative log-prior − log p(c).
In principle, Bayesian framework also allows inclusion of nuisance parameters, e.g. parameters of the
prior or the likelihood, that are inferred together with c and subsequently integrated out to lead to
marginal posterior distributions on c. In a classical case, assuming a uniform prior p(c) and an i.i.d
Gaussian likelihood with, say, constant variance σ2,

− logLD(c) =
N

2
log 2π +N log σ +

1

2σ2
||f − G⃗c||2, (3.15)

one arrives at a multivariate normal posterior distribution for the coefficient vector

c ∼ MVN ((G⃗T G⃗)−1G⃗Tf︸ ︷︷ ︸
µc

, σ2(G⃗T G⃗)−1︸ ︷︷ ︸
Σc

). (3.16)

Clearly, the posterior mean value is equal to cMAP and also coincides with the least-squares
estimate (3.10). With the probabilistic description of c, the PC surrogate is uncertain, and is in fact a
Gaussian process with analytically computable mean and covariance functions

gc(λ(ξ⃗)) ∼ GP
(
Ψ(ξ⃗)µc,Ψ(ξ⃗)ΣcΨ(ξ⃗′)T

)
, (3.17)

where Ψ(ξ⃗) is the basis measurement vector at parameter value ξ⃗, i.e. its k-th entry is Ψ(ξ⃗)k = Ψk(ξ⃗).
A key strength of the Bayesian approach is that it leads to a probabilistic surrogate that quantifies the
uncertainty due to lack of enough function evaluations.

The curse of dimensionality: High-dimensionality poses major challenges for the PC surrogate
construction. First of all, the number of function-evaluations needed to achieve a comparable accuracy
grows rapidly with dimensionality, considerably impacting the accuracy standard one wants to achieve,
particularly for expensive forward models. In this regard, Bayesian methods are arguably the best option
as they provide meaningful surrogates with uncertainty associated with the lack of information, i.e.
sufficient number of function evaluations. The second major challenge is associated with the rapid
growth of the polynomial basis sets. In the present work, the surrogate construction is associated with
input parameter vector λ of dimensionality d ≈ 50. The non-adaptive truncation options (as listed in
Table 3-1) typically lead to infeasibly large basis sets. For example, the total order truncation with order p
leads toK = (d+ p)!/(d!p!) basis terms. For d = 50, only a second-order expansion already requires
K = 1326 basis terms. The tensor product truncation would require a much higher number,
K = 350, of basis terms. The Lq and hyperbolic cross truncation options require less basis terms, but
still grow fast with dimensionality. While Smolyak construction [54, 9], high-dimensional model
representation [40] or anisotropic truncations [17] delay the basis growth to an extent and are
reasonable options for moderate dimensionalities (d ≈ 10), they rely on strong assumptions
(smoothness, low-rank structure or low effective dimensionality, respectively) of the function f(λ), and
generally are infeasible for d ≈ 50. The main limitation is that the number of model evaluationsN is
typically smaller than the degrees of freedom, i.e. the number of unknown PC coefficients, in the PC
surrogate representation. In such overdetermined cases, the classical least-squares regression is not
well-defined, and appropriate regularization techniques need to be applied.

27

3.2.2. Compressive sensing

Compressive sensing (CS) is a machine learning technique for sparse signal recognition that made a
breakthrough in image processing a decade ago [12, 4]. The key premise is that if a sparse signal is
present in sufficiently incoherent measurements, one can efficiently recover it with ℓ1 minimization. In
our context, measurements are model evaluations at randomly selected parameter inputs. While the
most classical formulation relies on direct ℓ1 minimization under sufficiently accurate reconstruction
constraint, it is generally equivalent to a regularized ℓ1 minimization problem, which in the PC
regression setting reads as

cCS = argmin
c

N∑
n=1

(
f(λ(ξ⃗(n)))−

∑
α∈I

cαΨα(ξ⃗
(n))

)2

+ γ
∑
α∈I

|cα| =

= argmin
c

[
||f − G⃗c||2 + γ||c||1

]
. (3.18)

In the simplest setting, the regularization parameter γ > 0 is typically chosen with cross-validation
methods[28]. It controls the relative importance of the penalty with respect to the goodness-of-fit. The
sparsest solution, i.e. the solution with the fewest non-zero PC coefficients, corresponds to the ℓ0 norm,
while the ℓ1 solution provides the reconstruction, while remaining a computationally tractable convex
optimization problem, with high probability given sufficiently mild conditions on the sample set {ξ⃗(n)}
and basis functions Ψα(ξ⃗)[4, 12].

Bayesian compressive sensing: The Bayesian analog of the ℓ1 regularization is called
Bayesian Compressive Sensing (BCS) [30, 1, 49], which uses the same likelihood function as in classical
Bayesian regression (3.15) and invokes the sparsity prior in the form of a Laplace distribution,

p(c) =
(γ
2

)K
exp

(
−γ
∑
α∈I

|cα|

)
, (3.19)

whereK = |I|. Note that the negative log-prior − log p(c) = const + γ
∑

α∈I |cα| plays a role of
the regularization term in Eq. (3.18). In fact, in order to effectively achieve the prior form (3.19), one can
implement a hierarchical Bayesian construction with Gaussian prior distribution on the PC coefficients
c

p(cα|s2α) =
1√
2πs2α

exp

(
− c2α
2s2α

)
(3.20)

and Gamma prior distribution on the Gaussian widths s2α

p(s2α|γ) =
γ2

2
exp

(
−γ

2s2α
2

)
, (3.21)

which together yield the Laplace prior (3.19) when marginalizing over s2α,

p(c|γ2) =
∫ ∞

0

∏
α∈I

p(cα|s2α)p(s2α|γ2)ds2α =
∏
α∈I

γ

2
e−γ|cα|. (3.22)

28

The regression technique with such hierarchical prior construction is a basis for the Bayesian Lasso
methodology [39, 24]. However, the solution approach in BCS is very similar to Relevance Vector
Machine (RVM) [58]. Unlike BCS, the RVM approach uses the inverse-variances rα = s−1

α as a
hyperparameter and endows them with a Gamma prior instead of Eq. (3.21). Less importantly, RVM is
developed in the context of radial basis functions, but the technique is equally applicable with
polynomial bases. While the full hierarchical Bayesian solution is generally difficult to evaluate, one
resorts to fixed values of the intermediary parameter vector s2, which is a convenient notation we will
take for the vector of prior variances {s2α : α ∈ I}. With fixed sα, σ2 and γ, the posterior distribution
of the coefficient vector c follows a multivariate normal distribution c|s2α, σ2, γ ∼ MVN (µ,Σ) with
covariance and mean defined as

Σ = σ2
(
G⃗T G⃗+ S

)−1

(3.23)

µ = σ−2ΣG⃗Tf (3.24)

where S is the diagonal matrix of prior variance fractions defined as Skk = σ2/s2k for k = 1, . . . , K .
Note that we identify each multiindex α with its counting index k(α), and then drop α for the
simplicity of the notation sk = sk(α) = sα.

The values s2k are fixed, and, together with σ2 are found according to an evidence maximization
procedure, effectively assuming very narrow priors for them [58, 59, 1]. The key observation drawn
from [58] is that this approximation has relatively mild effect on the prediction, or the quality of the
surrogate model approximation. The logarithm of evidence can be expressed analytically directly using
its definition,

Lf ,γ(s
2, σ2) = log p(f |s2, σ2, γ) = log

∫
c

p(f |c, σ2)p(c|s2)p(s2|γ)dc =

= −1

2

(
K log 2π + log |Z|+ fTZ−1f

)
+K log

(
γ2

2

)
− γ2

2

K∑
i=k

s2k︸ ︷︷ ︸
Prior: log p(s2|γ)

, (3.25)

where Z = σ2
(
EN + G⃗S−1G⃗T

)
, with EN defined as theN ×N identity matrix. We note two

important matrix relations that help rewrite (3.25) before taking derivatives [58]:

log |Z| = N log(σ2) + log |EN + G⃗S−1G⃗T | = [employ Matrix Determinant Lemma] =

= N log(σ2) + log
(
|S|−1|S + G⃗T G⃗|

)
= N log(σ2)− log |S|+K log(σ2)− log |Σ| =

= N log(σ2) +
K∑
k=1

log(s2k)− log |Σ| (3.26)

and

fTZ−1f = σ−2fT
(
EN + G⃗S−1G⃗T

)
f = [employ Woodbury Matrix Identity] =

= σ−2fTf − σ−2fT G⃗
(
S + G⃗T G⃗

)−1

G⃗Tf = σ−2fT
(
f − G⃗µ

)
=

= σ−2||f − G⃗µ||22 + σ−2µTSµ = σ−2||f − G⃗µ||22 + µT diag(s−2
k)µ. (3.27)

29

Furthermore, we use the relation
∂

∂Xij

log |X−1| = − ∂

∂Xij

log |X| = − 1

|X|
∂|X|
∂Xij

= −(X∗)ji
|X|

= −(X−1)ji (3.28)

to derive
∂ log |Σ|
∂s2k

=
1

s4k
Σkk and

∂ log |Σ|
∂σ2

=
K

σ2
− 1

σ2

K∑
k=1

s−2
k Σkk (3.29)

Now, taking derivatives of the evidence (3.25) with respect to s2k leads to

∂Lf ,γ

∂s2k
=

1

2

(
− 1

s2k
+
µ2
k + Σkk

s4k

)
− γ2

2
. (3.30)

We remark that the last term in (3.30) corresponds to the Gamma prior on s2k, and has a different form
in the RVM formulation [58], in which s2k follows an inverse-gamma distribution. Similarly, one can
take derivative with respect to σ2 to get

∂Lf ,γ

∂σ2
= −1

2

(
N

σ2
− K

σ2
+

∑K
k=1 s

−2
k Σkk

σ2
− ||f − G⃗µ||22

σ4

)
, (3.31)

leading to the best value of σ2

σ2
best =

||f − G⃗µ||22
N −K +

∑K
k=1 s

−2
k Σkk

(3.32)

to be used later in the algorithm.

Noting that µk and Σkk depend on sk and setting the derivatives (3.30) equal to zero can lead to update
mechanisms for finding the optimal sk’s. In [59, 1] it has been shown that the optimal sk’s vanish for
certain k’s essentially suggesting that the corresponding basis should be deleted from the multi-index
set. Furthermore, the search for the optimal sk’s admits an efficient basis deletion-addition strategy, in
which an iterative procedure leads to a basis set Is ⊂ I that is taken as the final basis set; see [1, 49], and,
in the RVM setting, [58, 59]. In this work, this procedure is generalized to include dimension-specific
γk, instead of a single γ as described in Section 3.3. After the sparse basis Is is found, one can then retain
the estimated values for σ2 and s2 to construct PC coefficient mean and covariance via Eqs (3.24) and
(3.23) and, consequently, the uncertain surrogate in a Gaussian Process form (3.17).

3.3. WEIGHTED ITERATIVE CS FOR BASIS
SELECTION

In order to achieve more efficient recovery of a sparse set of polynomials, one can generalize the standard
ℓ1 minimization problem to weighted regularization, making the parameter γ specific to each PC
coefficient,

cWCS = argmin
c

N∑
n=1

(
f(λ(ξ⃗(n)))−

∑
α∈I

cαΨα(ξ⃗
(n))

)2

+
∑
α∈I

γα|cα|. (3.33)

30

The a priori selection of weights γα can be quite challenging. The optimal choice γα = |cα|−1, which
essentially equates the ℓ1 minimization to the sparsest ℓ0 minimization problem, is infeasible since the
coefficients cα are unknown to begin with, but it suggests an efficient iterative algorithm for sparse
coefficient retrieval. This is the basis of iteratively reweighting approaches that start from an initial
vector γ(0)α , then, at each iteration with γ(i)α , solve the minimization problem (3.33) to achieve new

coefficient vector c(i)α and to update the weights for the next iteration γ(i+1)
α =

(
|c(i)α |+ ϵ

)−1

[13, 5].
The ‘nugget’ parameter ϵ > 0 is usually selected to be very small in order to simply stabilize the iterative
scheme and avoid unrealistically large weights.

In this work, we generalize the Bayesian Compressive Sensing method to allow weighted basis search by
making the parameters of the Gamma distribution in (3.21) coefficient-specific:

p(s2α|γ2α) =
γ2α
2

exp

(
−γ

2
αs

2
α

2

)
. (3.34)

As a consequence, the iterative search procedure for sparse learning [1, 49, 58, 59], which approximates
the BCS solution, is generalized to accommodate multiple γα instead of a single γ. Below we describe
the algorithm in a nutshell, referring the reader to [1, 58, 59] for technical details in a special case γα = 0.
For clarity of matrix-vector notations, let us again identify γα = γk for k-th basis term for some
indexing k(α). The log-evidence from Eq. (3.25) can be written in a form that isolates the contribution
from the k-th basis term as

Lf ,γ(s
2, σ2) = −1

2

(
K log 2π + log |Z−k|+ fTZ−1

−kf
)

︸ ︷︷ ︸
Lf ,γ(s

2
−k,σ

2)

−

− 1

2

[
log
(
1 + rks

2
k

)
− q2ks

2
k

1 + s2krk

]
︸ ︷︷ ︸

l(sk)

+ (3.35)

+
K∑
k=1

log

(
γ2k
2

)
− 1

2

K∑
k=1

γ2ks
2
k︸ ︷︷ ︸

Prior: log p(s2|γ)

where we have isolated the contribution from the k-th basis in Z−k = Z − s2kϕkϕ
T
k , and introduced

quantities rk and qk as

rk = ϕT
kZ

−1
−kϕk, and qk = ϕT

kZ
−1
−kf , (3.36)

with ϕk being the k-th column of G⃗. Intuitively, the ‘sparsity factor’ rk is a measure of ‘overlap’ the basis
vector ϕk has with the rest of the bases, while the ‘quality factor’ is interpreted as a measure of the
alignment of ϕk with the error of the model with that basis excluded [59]. The derivative of the evidence
with respect to s2k is then equal to

∂Lf ,γ

∂s2k
=

1

2

(
− rk
1 + rks2k

+
q2k

(1 + rks2k)
2
− γ2k

)
. (3.37)

31

which is simply another form of (3.30), enabling a convenient basis addition-deletion algorithm as
follows. Setting the derivative in (3.37) equal to zero, one arrives at values

s2k =

−rk(rk+2γk)+rk
√

(rk+2γk)2−4γk(rk−q2k+γk)

2γkr
2
k

, if q2k − rk > γk

0, if q2k − rk ≤ γk
(3.38)

that maximize the evidence with respect to k-th dimension. This does not guarantee a global maximum,
but allows for a sequential, dimension-wise maximization algorithm that is very fast and leads to at least
a local maximum of the evidence with respect to the vector s2. The procedure is shown in Algorithm 1.
This is a generalization of the fast marginal likelihood maximization algorithm developed in [58, 59]
(case γk = 0 for all k), and fast Laplace maximization developed in the original BCS work [1] (case
γk = γ for all k). As one intuitively expects, having basis-specific γk’s allows additional flexibility as
higher γk indicates that the corresponding basis term is more susceptible to being pruned from the basis
set. This is exactly what the weighted regularization (3.33) would suggest as well.

32

Algorithm 1: Fast iterative algorithm for weighted BCS
Input:

• Model evaluations f , regularization weights γk’s for k = 1, . . . , K

• Initialize σ2 = 0.01Var(f)
• Initial basis set I of sizeK = |I|
• Initial selected basis set IWBCS = ∅
• Set all s2k = 0 for all k = 1, . . . , K

• η, stopping criterion is L(i) − L(i−1) < η
(
L(i) − L(0)

)
, where L(i) is log-evidence (3.35) at i-th

iteration.

• Iteration counter i = 0

• Select a basis index k and add the corresponding basis to IWBCS

- Typically select k with the highest ratio ||ϕT
k f ||2/||ϕk||2, see [59].

• Compute s2k =
||ϕT

k f ||2/||ϕk||2−σ2

||ϕk||2
(special case of (3.36), (3.37) and (3.38) with γk = 0)

• Compute Σ and µ according to (3.23), with a basis set IWBCS (i.e. scalars for now)

while Stopping criterion not met do
• For all k, compute s2k according to (3.38), with a basis set IWBCS

• Add all bases with s2k > 0 to IWBCS

• Update Σ and µ according to (3.23), with a basis set IWBCS

• Update σ2 according to (3.32)

• Iteration counter i = i+ 1

end

Result:
• Final basis set IWBCS

• Corresponding coefficients c ∼ MVN (µ,Σ).

33

Initial Basis

Iterations

Weighted
BCS

(Alg. 1)

Model data

Sparse Basis Final Basis

Basis
Growth and
Reweighting

New Basis

Figure 3-1. Sketch of the overall iterative procedure of basis shrinkage and growth.
The steps correspond to Algorithm 2. This procedure is repeated for randomly
selected subsets of the training set to arrive at a final basis set that is not overfitting
as described in Algorithm 3.

34

Algorithm 2: Weighted iterative (Bayesian) compressive sensing
Input:

• Model evaluations
• Initial basis set I(0)

• Initial weights γ(0)α for α ∈ I(0)

• ϵ, stopping criterion.
• i = 0

while Stopping criterion not met do
• Shrink basis set: Perform weighted BCS described in Algorithm 1 on current basis set I(i) to arrive

at sparse basis set I(i)
s and corresponding coefficients c(i)α for α ∈ I(i)

s .
• Grow basis set: Enrich the basis set by adding admissible bases to arrive at new basis set I(i+1).
• Update the weights according to

[a] γ(i+1)
α =

(∣∣∣c(i)α

∣∣∣+ ϵ
)−1

if α ∈ I(i)
s , or

[b] γ(i+1)
α = ϵ−1 if α ∈ I(i+1)\I(i)

s (i.e. if α is a newly added basis)
• Move the iteration counter i = i+ 1.

end

Result:
• Final basis set If = I(i+1)

• Corresponding coefficients cfα = c
(i)
α for α ∈ If .

The weighted iterative BCS algorithm effectively shrinks the basis sets. However, it assumes an initial
basis set to be constructed, which ideally should include the eventual sparse basis set as a subset. Given
the high-dimensionality of the parameter space, it is not feasible to start with such a large basis set. For
example, a total-order truncation basis of dimensionality d = 50 leads to 52!/(50!2!) = 1326 basis
terms for second-order truncation and 53!/(50!3!) = 23426 basis terms for a third order truncation.
This leads to unnecessary computational burden and makes it infeasible to properly interrogate
higher-order terms. To this end, we implement a basis growth capability according to admissibility
criterion as developed and described in [49, 28]. In this work, we merge the iterative growth procedure
with the reweighting strategy described above. The sketch of the algorithm is given in Figure 3-1, while
the steps are described in Algorithm 2. As a stopping criterion, we have chosen i < Niter, i.e. simply
pass through the basis shrink/grow procedure a preselected numberNiter times. For the purposes of
this workNiter = 4 has been selected, which allows exploration of up to fifth order basis terms, since
the initial basis set I(0) is taken with a total-order truncation rule with p = 2. Our preliminary tests,
results not shown, however indicate that some degree of overfitting remains present for sufficiently low
number of function-evaluationsN . In other words, the weighted iterative algorithm of basis selection,
while properly selecting the high-coefficient bases, also selects a few spurious basis terms that are given
high coefficient for the specific sample set, but do not generalize well to parameter settings away from
the training points. This regime is certainly in effect for d = 68 andN = 3000 case that is described in
Section ??. Our remedy in such situations is a cross-validation study followed by basis intersection to
select only the relevant basis terms. The technique is detailed in [49], and is described in Algorithm 3 for

35

completeness.

Algorithm 3: Cross validation for basis selection
Input:

• Model evaluations
• Total trial numberKCV

for m=1 toKCV do
• Randomly select a subset of size 0.9N , i.e. 90% of the current training simulation set.
• With this subset as a training set, perform weighted iterative BCS described in Algorithm 2 to

arrive at sparse basis set I(m).
end

• Get the intersection of all basis sets I = I(1) ∩ I(2) ∩ · · · ∩ I(KCV)

• Perform a regular Bayesian least-squares fit (3.10) with the basis set I and the full set ofN training
simulations.

Result:
• Final basis set I
• Corresponding least-squares coefficients cα for α ∈ I .

3.4. GLOBAL SENSITIVITY ANALYSIS

In this work, the goal is to perform global sensitivity analysis (GSA) of a model with respect to a large
number of parameters. In this regard, Sobol sensitivity indices will be employed [56, 44]. These indices
correspond to variance-based decomposition, as they measure fractional contributions of each
parameter or group of parameters towards the total output variance. We outline three sensitivity
indices:

• Main effect sensitivities, also called first-order sensitivities, measure variance contribution due to
i-th parameter only, defined as

Si =
Vλi

Eλ−i
[f(λ)|λi]

Vf(λ)
, (3.39)

where Vλi
and Eλ−i

indicate variance with respect to the i-th parameter and expectation with
respect to the rest of the parameters, respectively.

• Total effect sensitivities measure total variance contribution of the i-th parameter, i.e. including
interactions with other parameters, and are defined as

Ti =
Eλ−i

Vλi
[f(λ)|λ−i]

Vf(λ)
= 1−

Vλ−i
Eλi

[f(λ)|λ−i]

Vf(λ)
, (3.40)

where Eλi
and Vλ−i

indicate expectation with respect to the i-th parameter and variance with
respect to the rest of the parameters, respectively.

36

• Joint sensitivities measure joint variance contribution due to i-th and j-th parameter and are
defined as

Jij =
Vλij

Eλ−ij
[f(λ)|λij]

Vf(λ)
− Si − Sj, (3.41)

where Vλij
and Eλ−ij

indicate variance with respect to the i-th and j-th parameters and
expectation with respect to the rest of the parameters, respectively.

While there are random sampling approaches [55, 43, 29, 45] for efficient estimation of the integral
quantities in formulae (3.39)-(3.41), they all suffer from the generic deficiency pertinent to all random
sampling methods. Namely, in order to get accurate enough estimates, one needs prohibitively large
number of model evaluations. In this regard, PC surrogates offer a much more efficient alternative.
When the function f(λ) is approximated by a PC surrogate gc(λ), one can compute moments and
sensitivity indices using the orthogonality of the PC basis functions,

Ef(λ) ≈ c0, Vf(λ) ≈
∑

0̸=α∈I

c2α, with 0 = (0, 0, . . . , 0) (3.42)

Si ≈
1

Vf(λ)

∑
α∈ISi

c2α, with ISi
= {α : αi > 0, αk = 0 for k ̸= i}

Ti ≈
1

Vf(λ)

∑
α∈ITi

c2α, with ITi
= {α : αi > 0} (3.43)

Jij ≈
1

Vf(λ)

∑
α∈IJij

c2α, with IJij = {α : αi > 0, αj > 0},

where ISi
, ITi

and IJij are multiindex subsets that include only the terms of interest for the
corresponding sensitivity index. Therefore, having constructed the PC surrogate, one can easily
evaluate the sensitivity indices by computing the weighted sum-of-the-squares of appropriately selected
PC coefficients [57, 10, 46].

37

4. SOURCE CODE DESCRIPTION

For more details on the actual source code in UQTk, HTML documentation is also available in the
doc/doxy/html folder.

4.1. C++ LIBRARIES

The following libraries are included in UQTk (source code in cpp/lib)

⊚ mcmc : Markov Chain Monte Carlo Base Class

⊚ amcmc : Adaptive Markov Chain Monte Carlo

⊚ tmcmc : Transitional Markov Chain Monte Carlo

⊚ ss : Single Site Markov Chain Monte Carlo

⊚ mala : Metropolis-adjusted Langevin algorithm

⊚ mmala : Manifold-variant of MALA

4.1.1. mcmc:

This directory features the common functionality between the different flavors of Markov Chain
Monte Carlo in UQTk. The functions within this base class are:

• MCMC(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor that takes in a pointer to a log posterior function and an additional pointer to
information about the posterior

• MCMC(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object

• MCMC() : Dummy constructor, used exclusively for TMCMC

• void setWriteFlag(int I) : Sets the value of the MCMC object’s write flag, which
determines if the MCMC will be written to the screen, via an integer. A value of 1 indicates that
the MCMC will be written to the screen, all other integers will not be

• void setFcnAccept(void (*fcnAccept)(void *)) : Sets the accept function given a
pointer to the function

39

• void setFcnReject(void (*fcnReject)(void *)) : Sets the reject function given a
pointer to the function

• void setChainDim(int chdim) : Sets the chain dimensionality given an integer

• void initChainPropCov(Array2D<double>& propcov) : Sets the proposal covariance
matrix given a 2d-array. For AMCMC, this matrix is used only before adaptivity starts

• void initChainPropCovDiag(Array1D<double>& sig) : Sets the proposal covariance
matrix given a 1d-array. For AMCMC, this matrix is used only before adaptivity starts

• void setOutputInfo(string outtype, string file,int freq_file, int
freq_screen) : Sets the output information for the MCMC given the type of file, the file
name, the frequency that the MCMC should print to the file, and the frequency that the
MCMC should print to the screen

• void namesPrepended() : Sets the MCMC so the names of the parameters are prepended in
the output file

• void setSeed(int seed) : Sets the seed for random generation

• void setLower(double lower, int i) : Set lower bound of MCMC as a double at the
index of i

• void setUpper(double upper, int i) : Set upper bound of MCMC as a double at the
index of i

• void setDefaultDomain() : Set the default unbounded domain for MCMC

• void setPostInfo(void *postinfo) : Set the posterior information given a pointer to the
posterior information

• void getChainPropCov(Array2D<double>& propcov) : By passing a 2d-array into the
function it sets it equal to the proposal covariance matrix

• string getFileName() : Gets the output file name as a string

• int getWriteFlag() : Gets the write flag for the MCMC object as an integer. A value of 1
indicates that the MCMC will be outputted to the screen

• void getSamples(int burnin, int every,Array2D<double>& samples) : Gets a
selective number of the MCMC samples by passing in an integer for the index after the burn-in
phase of MCMC has occurred and an integer for how often the chain’s samples are added. The
samples are then added to a 2D-array that is passed into the function

• void getSamples(Array2D<double>& samples) : Gets the full chain of MCMC samples
as a 2D-Array that is passed in

• void getFcnAccept(void (*fcnAccept)(void *)) : Gets the accept function of the
MCMC

• void getFcnReject(void (*fcnReject)(void *)) : Gets the reject function of the
MCMC

40

• string getOutputType() : Get the type of file, either binary or text

• . int getFileFreq() : Gets how frequently the MCMC prints its output to the file

• . int getScreenFreq() : Gets how frequently the MCMC prints its output to the screen

• bool getNamesPrepended() : Gets whether or not the names of the parameters are
prepended as a bool

• int getSeed() : Gets the seed for random generation as an integer

• double getLower(int i) : Gets the lower bound limit of the MCMC chain based on an
integer index i

• double getUpper(int i) : Gets the upper bound limit of the MCMC chain based on an
integer index i

• bool getDimInit() : Gets if the chain’s dimensionality has been set as a bool

• void getPostInfo(void *post) : Gets the posterior information given a pointer passed
into the function

• bool getPropCovInit() : Gets if the proposal covariance matrix has been set as a bool

• bool getOutputInit() : Gets if the output information has been set as a bool

• bool getLastWrite() : Gets the last index of the MCMC chain written as an integer

• bool getFcnAcceptInit() : Gets if the accept function is set as a bool

• bool getFcnRejectInit() : Gets if the reject function is set as a bool

• virtual int getNSubSteps() : Gets the number of sub steps for the MCMC object.
Written as virtual to be redefined for single-site MCMC

• int getLowerFlag(int i) : Gets the flag for the lower limit at an integer index of i. A value
of 1 indicates that the lower limit has been set, all other values indicate it has not

• int getUpperFlag(int i) : Gets the flag for the upper limit at an integer index of i. A value
of 1 indicates that the upper limit has been set, all other values indicate it has not

• void getAcceptRatio(double * accrat) : Gets the acceptance ratio of the MCMC
object by passing in a pointer to a double and setting the value of the object the pointer points to
the acceptance ratio

• double getAcceptRatio() : Gets the acceptance ratio as a double

• int GetChainDim() const : Gets the MCMC chain dimensionality

• void resetChainState() : Resets the entire MCMC chain state

• void resetChainFilename(string filename) : Resets the MCMC chain state and resets
the name of the file that the MCMC will be written to as the string that is passed into the
function

41

• void parseBinChain(string filename, Array1D<chainstate>& readchain) :
Parses the binary file, passed in as a string, and produces a 1d array of chain-states and writes them
to the 1d array passed into the function

• void writeFullChainTxt(string filename, Array1D<chainstate> fullchain) :
Writes the passed in 1d array of chainstates to the specific text file passed in as a string

• void getFullChain(Array1D<chainstate>& readchain) : Gets the full MCMC chain
as a passed in 1d array of chainstates

• void appendMAP() : Appends the MAP state to the end of the chain

• double getMode(Array1D<double>& MAPparams) : Gets the MAP parameters as a double
based on the 1d array that is passed into the functions

• int getFullChainSize() : Gets the full size of the MCMC chain as an integer

• void setCurrentStateStep(int i) : Sets the step of the current state as a given integer

• void getCurrentStateState(Array1D<double>& state) : Gets the state of the current
state by assigning it to the passed in 1d array

• double getCurrentStatePost() : Gets the post of the current state as a double

• void setCurrentStateState(Array1D<double>& newState) : Sets the current state’s
state to the passed in 1d array of doubles

• void setCurrentStatePost(double newPost) : Sets the current state’s post to the passed
in double

• void setCurrentStateAlfa(double newAlfa) : Sets the current state’s alfa to the passed
in double

• double getModeStatePost() : Gets the mode state’s post as a double

• void getModeStateState(Array1D<double>& state) : Gets the mode state’s state by
assigning it to the 1d array of doubles passed into the function

• virtual void runOptim(Array1D<double>& start) : Runs the optimization routine
for the MCMC object. Written as a virtual function to be redefined later by derived MCMC
classes

• virtual void runChain(int ncalls, Array1D<double>& chstart) : Generates the
MCMC chain. A pure virtual function that is defined by the derived MCMC classes to reflect
their specific MCMC generation variant

• virtual void runChain(int ncalls) : Generates the MCMC chain with a trivial initial
condition. A pure virtual function that is defined by the derived MCMC classes to reflect their
specific MCMC generation variant

• void runAcceptFcn() : Runs the accept function for the MCMC object

• void runRejectFcn() : Runs the reject function for the MCMC object

42

• bool newModeFound() : Checks to see if a new mode was found during the last call to
runChain and returns it as a bool

• double evalLogPosterior(Array1D<double>& m) : Evaluates the log-posterior based on
the 1d array of doubles passed into the function

• bool inDomain(Array1D<double>& m) : Checks if all of the points in the 1d array are in the
defined domain of the MCMC and returns the evaluation as a bool

• void writeChainTxt(string filename) : Writes the full chain as a text file with the name
of the string passed into the function

• void writeChainBin(string filename) : Writes the full chain as a binary file with the
name of the string passed into the function

• void setNewMode(bool value) : Sets the new mode value to the boolean value passed into
the function

4.1.2. amcmc:

This directory features the functionality and variables for Adaptive Markov Chain Monte Carlo
(AMCMC) in UQTk. AMCMC is the most common version of MCMC in UQTk. The functions
within this class are:

• AMCMC(double (*logposterior)(Array1D<double>&, void *), void *postinfo)
: Constructor for AMCMC that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MCMC base class

• AMCMC(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• void initAdaptSteps(int adaptstart,int adaptstep, int adaptend) :
Initializes the adaptivity step parameters for AMCMC. The start of adaptivity, how often the
MCMC adapts, and when the adaptivity ends are initialized as integers.

• void initAMGamma(double gamma_) : Initializes the scaling factor of gamma for AMCMC
as a double

• void initEpsCov(double eps_cov_) : Initializes the covariance nugget for AMCMC as a
double

• void getAdaptSteps(Array1D<int> adaptstep_) : Gets the adaptivity step parameters
for AMCMC by setting the passed in 1d array of 3 integers equal to the parameters. The first
element is the start of adaptivity. The second element is the step size for adaptivity, or how often
the AMCMC adapts. The third element is the end of the adaptivity of the AMCMC.

• double getGamma() : Gets the coefficient behind the covariance scaling factor for AMCMC
as a double. This is also known as the gamma value

43

• double getEpsCov() : Gets the offset epsilon for Cholesky to be computationally feasible as a
double. This is also known as the covariance nugget

• void printChainSetup() : Prints the chain information on the screen

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain. This function overrides the pure virtual function in the base class
of the MCMC. It generates the MCMC in the manner specific to AMCMC. It is written as a
virtual function to allow for any additional derived classes that would be based off of AMCMC

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of the MCMC. It generates the MCMC in the manner specific
to AMCMC. It is written as a virtual function to allow for any additional derived classes that
would be based off of AMCMC

4.1.3. tmcmc:

This directory features the functionality and variables for Transitional Markov Chain Monte Carlo
(TMCMC) in UQTk. The functions within this class are:

• TMCMC() : Constructor for TMCMC that takes in no values. This constructor delegates to the
similar dummy constructor in the MCMC base class

• void initDefaults() : Sets the default values for the TMCMC object

• void initTMCMCNprocs(int tmcmc_nprocs) : Initializes the number of processes for
TMCMC as an integer

• void initTMCMCGamma(double tmcmc_gamma) : Initializes the coefficient behind the
covariance scaling factor for TMCMC as a double

• void initTMCMCCv(double tmcmc_cv) : Initializes the maximum allowed coefficient of
variation for the weights in TMCMC as a double

• void initTMCMCMFactor(int tmcmc_MFactor) : Initializes the the multiplicative factor
for chain length to encourage mixing in TMCMC as an integer

• void initTMCMCBasis(bool tmcmc_basis) : Initializes the choice to resample according
to BASIS and CATMIPs in TMCMC as a bool

• void initTMCMCCATSteps(int tmcmc_CATSteps) : Initialize the CATMIPs resampling
parameter for TMCMC as an integer

• int getTMCMCNprocs() : Gets the number of processes for TMCMC as an integer

• double getTMCMCGamma() : Gets the coefficient behind the covariance scaling factor for
TMCMC as a double

• double getTMCMCCv() : Gets the maximum allowed coefficient of variation for the weights in
TMCMC as a double

44

• int getTMCMCMFactor() : Gets the multiplicative factor for chain length to encourage mixing
in TMCMC as an integer

• bool getTMCMCBasis() : Gets the choice to resample according to BASIS and CATMIPs in
TMCMC as a bool

• int getTMCMCCATSteps() : Gets the CATMIPs resampling parameter for TMCMC as an
integer

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain. This function overrides the pure virtual function in the base class
of the MCMC. It generates the MCMC in the manner specific to TMCMC. It is written as a
virtual function to allow for any additional derived classes that would be based off of AMCMC

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of the MCMC. It generates the MCMC in the manner specific
to TMCMC. It is written as a virtual function to allow for any additional derived classes that
would be based off of TMCMC

4.1.4. ss:

This directory features the functionality and variables for Single Site Markov Chain Monte Carlo (SS)
in UQTk. SS is the most basic and simplest of the types of MCMC in UQTk. The functions within
this class are:

• SS(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor for SS that takes in a pointer to a log posterior function and an additional pointer to
information about the posterior. This constructor delegates to the similar constructor in the
MCMC base class

• SS(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain. This function overrides the pure virtual function in the base class
of the MCMC. It generates the MCMC in the manner specific to SS. It is written as a virtual
function to allow for any additional derived classes that would be based off of SS

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of the MCMC. It generates the MCMC in the manner specific
to SS. It is written as a virtual function to allow for any additional derived classes that would be
based off of SS

• int getNSubSteps() override : Gets the number of sub steps for an SS object. This
overrides the virtual function previous defined in the MCMC base class

45

4.1.5. mala:

This directory features the functionality and variables for Metropolis-adjusted Langevin algorithm
(MALA) in UQTk. The functions within this class are:

• MALA(double (*logposterior)(Array1D<double>&, void *), void *postinfo) :
Constructor for MALA that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MCMC base class

• MALA(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MCMC base class

• void initEpsMALA(double eps_mala_) : Initializes the epsilon for MALA as double

• void setGradient(void (*gradlogPosterior)(Array1D<double>&,
Array1D<double>&, void *)) : Sets the gradient function given a pointer to a gradient of a
logPosterior function

• double getEpsMALA() : Gets the epsilon for MALA as a double

• void getGradient(void (*gradlogPosterior)(Array1D<double>&,
Array1D<double>&, void *)) : Gets gradient function by passing in a pointer

• bool getGradientFlag() : Gets if the gradient function is set as a bool

• void evalGradLogPosterior(Array1D<double>& m, Array1D<double>& grads) :
Evaluates the gradient function based on two 1d arrays of doubles

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain. This function overrides the pure virtual function in the base class
of the MCMC. It generates the MCMC in the manner specific to MALA. It is written as a
virtual function to allow for any additional derived classes that would be based off of MALA

• virtual void runChain(int ncalls, Array1D<double>& chstart) override :
Generates the MCMC chain based on a trivial initial condition. This function overrides the pure
virtual function in the base class of the MCMC. It generates the MCMC in the manner specific
to MALA. It is written as a virtual function to allow for any additional derived classes that would
be based off of MALA

• virtual void runOptim(Array1D<double>& start) override : Runs the
optimization routine for the MCMC object. It generates the MCMC in the manner specific to
MALA. It is written as a virtual function to allow for any additional derived classes that would be
based off of MALA

46

4.1.6. mmala:

This directory features the functionality and variables for Manifold variant of Metropolis-adjusted
Langevin algorithm (MALA) in UQTk. MMALA is a derived class of the MALA class. Thus making
the MALA class a base class for MMALA. The functions within this class are:

• MMALA(double (*logposterior)(Array1D<double>&, void *), void *postinfo)
: Constructor for MMALA that takes in a pointer to a log posterior function and an additional
pointer to information about the posterior. This constructor delegates to the similar constructor
in the MALA base class

• MMALA(LogPosteriorBase& L) : Constructor that takes in a LogPosteriorBase object. This
constructor delegates to the similar constructor in the MALA base class

• void setMetricTensor(void (*metricTensor)(Array1D<double>&,
Array2D<double>&, void *)) : Sets the metric tensor function used in MMALA

• void getMetricTensor(void (*metricTensor)(Array1D<double>&,
Array2D<double>&, void *)) : Gets the metric tensor function used in MMALA

4.2. C++ APPLICATIONS

The following command-line applications are available (source code is in cpp/app)

⊚ dfi : Data-free inference

⊚ generate_quad : Quadrature point/weight generation

⊚ gen_mi : Polynomial multiindex generation

⊚ gp_regr : Gaussian process regression

⊚ lr_regr : Low-rank regression

⊚ model_inf : Model parameter inference

⊚ pce_eval : PC evaluation

⊚ pce_quad : PC generation from samples

⊚ pce_resp : PC projection via quadrature integration

⊚ pce_rv : PC-related random variable generation

⊚ pce_sens : PC sensitivity extraction

⊚ pdf_cl : Kernel Density Estimation

⊚ regression : Linear parametric regression

⊚ sens : Sobol sensitivity indices via Monte-Carlo sampling

47

Below we detail the theory behind all the applications. For specific help in running an app, type
app_name -h.

4.2.1. dfi:

This app implements a simple data-free inference (DFI) approach to match the pushforward posterior
of a model to a given set of summary statistics. In essence, the code performs Bayesian inference with an
Approximate Bayesian Computation (ABC) log-likelihood given by

logLα(ν) := −1

2

D∑
d=1

αd

Nd∑
n=1

[
log(2πβds

(n)
d

2
) +

1

Kdβds
(n)
d

2

Kd∑
k=1

(
z
(n,k)
d − fd(x

(n)
d ,ν)

)2]
. (4.1)

We will outline the different components of (4.1) below.

Consider a set ofD data sets Dd, d = 1, 2, . . . , D, withNd measurement locations each. At each
measurement location x

(n)
d , we have a measurement value y(n)d as well as an associated uncertainty s(n)d ,

i.e.,
Dd = {x(n)

d , y
(n)
d , s

(n)
d }Nd

n=1, d = 1, 2, . . . , D, (4.2)

and D = {Dd}Dd=1. For example, the data could correspond to measurements of a certain physical
quantity under different operating conditions. In this case, the measurement locations x(n)

d could be,
for example, a set of temperatures, and the data sets Dd, d = 1, 2, . . . , D could be the measurements
under different operating conditions.

Our goal is to calibrate an assumed model fd(x,ν), d = 1, 2, . . . , D, with respect to the model
parameters ν . We assume that we only have summary statistics of the data available, a setting which is
different from the classic Bayesian calibration setting with noisy measurements. In particular, we
assume the reported error bars reflect uncertainty in the model parameters, and our goal is to match the
model predictions with both the reported measurement value and the measurement error.

A typical DFI procedure would then compute a joint posterior density on both the data and model
parameters simultaneously, where consistency between the reported summary statistics and the statistics
of the posterior is enforced using a maximum entropy principle. The algorithm entails a nested
sampling procedure, with an outer loop evolving over the data space, and an inner loop evolving in the
parameter space. At each iteration of the outer loop, a new data set is proposed, after which the inner
loop is executed in order to compute the proposed parameter posterior. Samples of the proposed
posterior are then used to check for consistency of the proposed data set with the reported summary
statistics. Each accepted data set provides a consistent posterior on the model parameters. The final
pooled posterior is ultimately obtained by combining the consistent data sets together.

However, the classic DFI algorithm can be computationally demanding. We use a more flexible
approach, in which a consistent data set is defined as a data set for which the statistics, computed from
the data is, up to a tolerance, equal to the reported summary statistics.

48

To this end, we define a collection ofKd synthetic data sets Z(k)
d := {z(n,k)d }Nd

n=1, k = 1, 2, . . . , Kd, for
each experimental data set Dd, where

z
(n,k)
d ∼ N

(
y
(n)
d , βds

(n)
d

2
)
, (4.3)

with y(n)d and s(n)d the measurement value and measurement error respectively, see (4.2), and where
βd > 0 is a scale factor for the variance of the synthetic data set. Hence, the data set Z(k)

d contains
synthetic observations that are sampled from a multivariate Gaussian distribution centered at the
measurement mean y(n)d for each n = 1, 2, . . . , Nd, and with a variance that can be tuned by choosing
appropriate values for βd.

Each synthetic data set Z(k)
d , k = 1, 2, . . . , Kd, represents an opinion about the posterior, denoted by

p(ν|Z(k)
d). This posterior is obtained by setting up an inference problem with log likelihood

logL(k)
d (ν) := −1

2

Nd∑
n=1

log(2πβds(n)d

2
) +

(
z
(n,k)
d − fd(x

(n)
d ,ν)

)2
βds

(n)
d

2

 , (4.4)

where we used the assumption that the synthetic data is generated from a multivariate Gaussian
distribution.

TheKd different opinions can be combined using logarithmic pooling. This can be accomplished by
gathering all synthetic data set Z(k)

d into a single, large data set Zd := {Z(k)
d }Kd

k=1, and setting up an
inference problem that uses a log-pooled log likelihood

logLd(ν) := − 1

Kd

Kd∑
k=1

logL(k)
d (ν). (4.5)

Once we obtain the posterior density p(ν|Zd) on the model parameters, samples from the posterior can
be propagated through the assumed forward model fd(x,ν), in order to obtain samples from the
pushforward posterior. From the pushforward posterior density, we can extract a set of statistics
s̃d := {s̃(n)d }Nd

n=1, such as the standard deviation at each measurement location. These computed
statistics can then be compared to the reported summary statistics sd := {s(n)d }Nd

n=1 to decide whether
the proposed data set Zd is consistent. For example, we may define a consistent data set Zd to be a data
set that satisfies

∥sd − s̃d∥p ≤ ε (4.6)

for a given p-norm and given tolerance ε > 0. Equation (4.6) may be satisfied by choosing an
appropriate value for the scale factor βd in (4.3).

Once we have obtained consistent synthetic data sets Zd for each experimental data set
d = 1, 2, . . . , D, we combine the different consistent data sets in a single data set Z = {Zd}Dd=1 and set
up a final inference problem with log likelihood

logL(ν) :=
D∑

d=1

αd logLd(ν). (4.7)

49

In this expression, the weights {αd}Dd=1 can be used to express our confidence in the respective
experimental data sets. We may use these weights, for example, to account for the different number of
measurement locationsNd in each data set. In that case, the weights could be chosen as

αd :=
DN−1

d∑D
d=1N

−1
d

. (4.8)

Combining equations (4.4), (4.5) and (4.7), we obtain the likelihood shown in (4.1).

Below, we detail the necessary input files, as well as the most important options of the program. See also
the “help” message (type dfi -h) for additional details.

Input files:

• -d <data_file> sizeNd × 2 default: data.{d}.dat
Name of the file that contains the experimental data. This file should contain two columns, a first
column with the measurement values, and a second column with the associated uncertainty.
Multiple numbered data files can be provided by using “{d}” in the filename. UQTk will expand
these tokens by consecutive data set numbers starting from 1.

• -c <pccf_file> size P (n)
d × 1 default: pccf.{d}.{n}.dat

Name of the files that contain the set of PCE coefficients. Specify multiple PCEs at different
measurement stations by using “{n}” in the filename. The code will expand these tokens by
consecutive PCE numbers starting from 1. Multiple sets of PCEs for the quantities predicted in
each data set can be provided by using “{d}” in the filename.

• -i <mindex_file> size P (n)
d × s default: mindex.{d}.{n}.dat

Name of the files that contain the set of PCE multi-indices. Every row contains the (integer)
order of the basis polynomial in every dimension. Specify multiple PCEs at different
measurement stations by using “{n}” in the filename. Multiple sets of PCEs for the quantities
predicted in each data set can be provided by using “{d}” in the filename.
Currently, only Legendre–uniform PCEs (LU) are supported.

• -p <prior_file> size s× 3 default: prior.dat
Name of the file that contains the prior specifications. Every line of this file corresponds to the
prior specification of a single parameter. Uniform and Gaussian priors are supported. Specify
uniform priors as “uniform a b” where “a” is the lower bound and “b” is the upper bound of
the distribution for this parameter. Specify Gaussian priors as “gaussian mu sigma” where
“mu” is the mean and “sigma” is the standard deviation of the distribution for this parameter.

• -n <nb_of_mcmc> integer default: 100,000
Number of MCMC iterations.

• -k <nb_of_synth> integer or list default: 100
Number of synthetic data sets. Specify a different number of synthetic data sets for each
experimental data set using a comma-separated list.

50

• -b <scaling_factor> integer or list default: 1
Scaling factor for the standard deviation used to generate the synthetic data sets. Specify a
different scaling factor for each experimental data set using a comma-separated list.

• -j <weights> list or ‘data_size’ default: 1
Weights used in the likelihood formulation. When this key is not specified, we assume the
weights are equal to 1 for each data set. With the special option ‘data_size’, we use weights that
compensate for the number of measurements in each data set.

There are other options to set a random seed (-r), change the MCMC proposal jump size (-g), prepend
the MCMC with optimization to compute good initial conditions (-o) or specify a custom initial
condition (-t), set the output frequency of the chain (-u) and use custom synthetic data sets (-s).

For convenience, we also provide the following options:

• -z
Compute the standard deviation of the pushforward posteriors for each data set and each
measurement station on the fly when this key is specified. These values can be used as a possible
statistic to determine consistency of the synthetic data sets with the reported measurement
errors. Use the optional keys -m and -e to specify the burnin and subsampling rate of the
samples used to evaluate the standard deviations.

• -v <pccf_file> sizeR(n)
d × 1 default: pushforward.pccf.{d}.{n}.dat

-w <mindex_file> sizeR(n)
d × s default: pushforward.mindex.{d}.{n}.dat

Specify a set of PCEs where the posterior samples should be evaluated. These PCEs are
potentially different from the PCEs at each measurement station where data is available. Use the
optional keys -m and -e to specify the burnin and subsampling rate of the samples used to
evaluate the pushforward.

• -q
Compute the expectation of the Fisher information matrix over the posterior when specified.
This is a metric useful when constructing a likelihood-informed subspace. Use the optional keys
-m and -e to specify the burnin and subsampling rate of the samples used to evaluate the metric.
Warning: this option makes the MCMC sampling very slow!

A set of example notebooks illustrating the capabilities of dfi using a simple quadratic model problem
is located in examples/dfi_app/.

4.2.2. generate_quad:

This utility generates isotropic quadrature (both full tensor product or sparse) points of given
dimensionality and type. The keyword options are:

Quadrature types: -g <quadType>

• LU : Legendre-Uniform

• HG : Gauss-Hermite

51

• LG : Gamma-Laguerre

• SW : Stieltjes-Wiegert

• JB : Beta-Jacobi

• CC : Clenshaw-Curtis

• CCO : Clenshaw-Curtis Open (endpoints not included)

• NC : Newton-Cotes (equidistant)

• NCO : Newton-Cotes Open (endpoints not included)

• GP3 : Gauss-Patterson

• pdf : Custom PDF

Sparsity types: -x <fsType>

• full : full tensor product

• sparse : Smolyak sparse grid construction

Note that one can create an equidistant multidimensional grid by using ‘NC’ quadrature type and ‘full’
sparsity type.

4.2.3. gen_mi:

This utility generates multi index set of a given type and dimensionality. The keyword options are:

Multiindex types: -x <mi_type>

• TO : Total order truncation, i.e. α = (α1, . . . , αd), where α1 + · · ·+ αd = ||α||1 ≤ p, for
given order p and dimensionality d. The number of multiindices isNTO

p,d = (p+ d)!/(p!d!).

• TP : Tensor product truncation, i.e. α = (α1, . . . , αd), where αi ≤ pi, for i = 1, . . . , d.
The dimension-specific orders are given in a file with a name specified as a command-line
argument (-f). The number of multiindices isNTP

p1,...,pd
=
∏d

i=1(pi + 1).

• HDMR : High-Dimensional Model Representation, where, for each k, k-variate multiindices are
truncated up to a given order. That is, if ||α||0 = k (i.e. the number of non-zero elements is
equal to k), then ||α||1 ≤ pk, for k = 1, . . . , kmax. The variate-specific orders pk are given in a
file with a name specified as a command-line argument (-f). The number of multiindices
constructed in this way isNHDMR

p0,...,pkmax
=
∑kmax

k=0 (pk + k)!/(pk!k!).

52

4.2.4. gp_regr:

This utility performs Gaussian process regression [41], in particular using the Bayesian perspective of
constructing GP emulators, see e.g. [25, 37]. The data is given as pairs D = {(x(i), y(i))}Ni=1, where
x ∈ Rd. The function to be found, f(x) is endowed with a Gaussian prior with mean h(x)Tc and a
predefined covarianceC(x, x′) = σ2c(x, x′). Currently, only a squared-exponential covariance is
implemented, i.e. c(x, x′) = e−(x−x′)TB(x−x′). The mean trend basis vector
h(x) = (L0(x), . . . , LK−1(x)) consists of Legendre polynomials, while c and σ2 are hyperparameters
with a normal inverse gamma (conjugate) prior

p(c, σ2) = p(c|σ2)p(σ2) ∝ e−
(c−c0)

T V −1(c−c0)

2σ2

σ

e−
β

σ2

σ2(α+1)
.

The parameters c0, V −1 andB are fixed for the duration of the regression. Conditioned on yi = f(xi),
the posterior is a student-t process

f(x)|D, c0, V −1, B, α, β ∼ St-t(µ∗(x), σ̂c∗(x, x′))

with mean and covariance defined as

µ∗(x) = h(x)T ĉ+ t(x)TA−1(y −H ĉ),

c∗(x, x′) = c(x, x′)− t(x)TA−1t(x′) + [h(x)T − t(x)TA−1H]V ∗[h(x′)T − t(x′)TA−1H]T ,

where yT = (y(1), . . . , y(N)) and

ĉ = V ∗(V −1c0 +HTA−1y) σ̂2 =
2β + cT0 V

−1c0 + yTA−1y − ĉT (V ∗)−1ĉ

N + 2α−K − 2

t(x)T = (c(x, x(1)), . . . , c(x, x(N))) V ∗ = (V −1 +HTA−1H)−1

H = (h(x(1))T , . . . ,h(x(N))T) Amn = c(x(m), x(n))

(4.9)

Note that currently the commonly used prior p(c, σ2) ∝ σ−2 is implemented which is a special case
with α = β = 0 and c0 = 0, V −1 = 0K×K . Also, a small nugget of size 10−6 is added to the diagonal
of matrixA for numerical purposes, playing a role of ‘data noise’. Finally, the covariance matrixB is
taken to be diagonal, with the entries either fixed or found before the regression by maximizing
marginal posterior [37]. More flexibility in trend basis and covariance structure selection is a matter of
current work.

The app builds the Student-t process according to the computations detailed above, and evaluates its
mean and covariance at a user-defined grid of points x.

4.2.5. lr_regr:

This module constructs a canonical low rank approximation of a function in a black box setting given
input/output samples.

53

Canonical-tensor decomposition: A univariate function u(x) can be written approximately
as

u(x) ≈ ũ(x) =

p∑
j=0

vjϕj(x), (4.10)

where ϕj(x) is the jth basis function and vj is the jth expansion coefficient, for j = 0, . . . , pwith
some p > 0. Likewise, a multivariate function u(x) can be expanded as

u(x) ≈ ũ(x) =

p1∑
j1=0

· · ·
pm∑

jm=0

vj1,...,jmϕ
(1)
j1
(x1) · · ·ϕ(m)

jm
(xm), (4.11)

where ϕ(i)
ji
(xi) is the jith basis function in the ith coordinate, xi. The number of expansion coefficients

{vj1,...,jm} is
∏m

i=1(pi + 1) or anO(pm1) quantity, if p1 = · · · = pm. This exponential increase in the
number of unknowns with dimension is a manifestation of the curse of dimensionality.

A low-rank approximation instead expands u(x) in the form

u(x) ≈ ũ(x) =
r∑

k=1

m∏
i=1

w
(i)
k (xi), (4.12)

with each univariate functionw(i)
k (xi) being represented, in analogy to Eq. (4.10), as

w
(i)
k (xi) =

pi∑
ji=0

w
(i)
k,ji
ϕ
(i)
ji
(xi). (4.13)

Thus a low-rank approximation of u(x) is given as

u(x) ≈
r∑

k=1

m∏
i=1

{
pi∑

ji=0

w
(i)
k,ji
ϕ
(i)
ji
(xi)

}
. (4.14)

The number of expansion coefficients {w(i)
k,ji

} is dramatically reduced to r
∑m

i=1(pi + 1), which is an
O(rmp1) quantity, if p1 = · · · = pm, and is linear with dimensionm. The value of r and its scaling
withm is dependent on problem and can only be assessed from applications as demonstrated below.
Next, we describe an algorithm, which is based on alternating least squares, to determine the coefficients
{w(i)

k,ji
}.

Alternating-least-squares algorithm: Before explaining the alternating-least-squares (ALS)
algorithm, we first review the standard least-squares method to determine the coefficients {vj} in Eq.
(4.10). Suppose that we have S sample points of x, {xs|s = 1, . . . , S}, at which we evaluate u(x).
Defining an S-by-(p+ 1) matrix Φ by

Φ =

ϕ0(x
1) . . . ϕp(x

1)
...

ϕ0(x
S) . . . ϕp(x

S)

 , (4.15)

54

we can express Eq.(4.10) on the sample points as

u ≈ Φv, (4.16)

where u and v are column vectors defined as (u)i = u(xi), and (v)j = vj . The least-squares method
solves for v that minimizes the variance,

∥u−Φv∥22, (4.17)

where ∥ · ∥2 is L2 norm of a vector. Hence, the coefficients {vi} are obtained by performing the
minimization

min
v

∥u−Φv∥22, (4.18)

which has a closed-form solution,

v =
(
ΦTΦ

)−1
ΦTu, (4.19)

in the case of real valued basis functions.

In a low-rank approximation of a multivariate function, we determine the expansion coefficients
{w(i)

k,ji
} by minimizing the variance in them-dimensional space,

min
{w}

∥u− ũ∥22, (4.20)

where ũ is written as Eq. (4.14). The ALS algorithm consists in performing the standard least-squares
determination of expansion coefficients {w(l)

k,jl
} for one coordinate (say, l = i) at a time, while holding

others (all l except i) fixed, and repeating it for all coordinates cyclically until convergence.

One least-squares iteration for the ith coordinate is carried out as follows. Let the column vector [of
length r(pi + 1)] in the matrix of expansion coefficients corresponding to the ith coordinate be

z(i) =

w
(i)
1
...

w
(i)
r

 , (4.21)

where w(i)
k = [w

(i)
k,0, . . . , w

(i)
k,pi

]T is a column vector of length pi + 1. We also define an S-by-r(pi + 1)

matrix Φ(i) as

Φ(i) =
[
Φ

(i)
1 · · ·Φ(i)

r

]
, (4.22)

with

Φ
(i)
k =

c
(i)
k,1ϕ

(i)
0 (x1i) . . . c

(i)
k,1ϕ

(i)
pi (x

1
i)

...
c
(i)
k,Sϕ

(i)
0 (xSi) . . . c

(i)
k,Sϕ

(i)
pi (x

S
i)

 , (4.23)

55

where

c
(i)
k,s =

m∏
l=1,l ̸=i

w
(l)
k (xsl) (4.24)

=
m∏

l=1,l ̸=i

[
ϕ
(l)
0 (xsl) . . . ϕ

(l)
pl
(xsl)

]
·w(l)

k , (4.25)

is the part of the multivariate function held fixed in this iteration.

According to Eq. (4.19), we find

z(i) =
(
Φ(i)TΦ(i)

)−1

Φ(i)Tu. (4.26)

Starting with some initial guess of z(i) for all i’s (1 ≤ i ≤ m), we iterate the least-squares determination
of z(i) for one (the ith) dimension at a time, until the L2 norm of difference of z(i) in consecutive
iterations falls below a small tolerance or the maximum iteration count is reached.

Implementation: The syntax of the main script is

lr_regr -x <xfile> -y<yfile> -b <basistype> -r <rank> -t <xcheckfile>
-o <order> -i<maxiter> -s<strpar> -v %-l<dblpar>

• -x <xfile> : A file containing input sample points {xs|s = 1, . . . , S} at which the function
was evaluated (matrix of size S ×m). Default is xdata.dat

• -y <yfile> : A file containing output sample points u(xs) (A vector of length S). Default is
ydata.dat

• -b <basistype> : Type of basis ϕ(i)
ji

. Current implementation allows only one basis type for all
dimensions. There are two options.

– PC corresponds to Polynomial Chaos basis. Type of polynomial chaos is indicated by -s
option (see below)

– POL corresponds to monomial basis i.e. 1, x, x2 . . .

• -r <rank> : An integer as Maximum rank of approximation (i.e. r in Eq. (4.12))

• -t <xcheckfile> : A file containing input sample points at which the approximation is tested
for validation or plotting purposes. The output of low rank surrogate evaluation is stored in
ycheck_k.dat files where 1 ≤ k ≤ r. If xcheckfile.dat is not provided, xdata.dat is
used instead.

• -o <order> : An integer as order of basis function (i.e. pi in Eq. (4.13)). In the current
implementation, we use the same order in all dimensions. The default order is 4.

• -i <maxiter> : An Integer for maximum iterations in ALS. The default value is 50.

56

• -s <strpar> : A string for type of polynomial chaos (for PC basis). The default used here is
Legendre basis for standard uniform measure.

• -v : Verbosity flag to control display on screen during run time. Do not use it if you want only
the bare minimum.

4.2.6. model_inf:

This utility perform Bayesian inference for several generic types of models. Consider a dataset
D = {(x(i), y(i))}Li=1 of pairs of x-y measured values from some unknown ‘truth’ function g(·), i.e.
y(i) = g(x(i))+meas.errors. For example, y(i) can be measurements at spatial locations x(i), or at time
instances x(i), or x(i) = i simply enumerating several observables. We call elements of x ∈ IRS design
or controllable parameters. For simplicity, assume y(i) is a scalar, but the code accepts multiple replica
data for each x(i). Assume, generally, that g is not deterministic, i.e. the vector of measurements y(i) at
each i containsR instances/replicas/measurements of the true output g(x). Furthermore, consider a
model of interest f(λ;x) as a function of model parameters λ ∈ IRD producing a single output. We
are interested in calibrating the model f(λ;x) with respect to model parameters λ, seeking an
approximate match of the model to the truth:

f(λ;x) ≈ g(x). (4.27)

The full error budget takes the following form

y(i) = f(λ;x(i)) + δ(x(i)) + ϵi, (4.28)

where δ(x) is the model discrepancy term, and ϵi is the measurement error for the i-th data point. The
most common assumption for the latter is an i.i.d Gaussian assumption with vanishing mean

ϵi ∼ N(0, σ2), for all i = 1, . . . , L. (4.29)

Concerning model error δ(x), we envision three scenarios:

• when the model discrepancy term δ(x) is ignored, one arrives at the classical construction
y(i) − f(λ;x(i)) ∼ N(0, σ2) with likelihood described below in Eq. (4.37).

• when the model discrepancy δ(x) is modeled explicitly as a Gaussian process with a predefined,
typically squared-exponential covariance term with parameters either fixed apriori or inferred as
hyperparameters, together with λ. This approach has been established in [31], and is referred to as
“Kennedy-O’Hagan”, koh approach.

• embedded model error approach is a novel strategy when model error is embedded into the
model itself. For detailed discussion on the advantages and challenges of the approach, see [47].
This method leads to several likelihood options (keywords abc, abcm, gausmarg, mvn, full,
marg), many of which are topics of current research and are under development. In this
approach, one augments some of the parameters in λwith a probabilistic representation, such as
multivariate normal, and infers parameters of this representation instead. Without loss of
generality, and for the clarity of illustration, we assumed that the first M components of λ are
augmented with a random variable.

57

One embedding option is the first-order Gauss-Hermite PC expansion. In other words, λ is
augmented by a multivariate normal random variable as

λ → Λ = λ+ A(α)ξ⃗, (4.30)

where

A(α) =

α11 0 0 . . . 0
α21 α22 0 . . . 0
α31 α32 α33 . . . 0

...
...

...
αM1 αM2 αM3 . . . αMM

0 0 0 . . . 0
...

...
...

0 0 0 . . . 0
0 0 0 . . . 0

D×M

, and ξ⃗ =

ξ1
ξ2
...
ξM

 (4.31)

Here ξ⃗ is a vector of independent identically distributed standard normal variables, and
α = (α11, . . . , αMM) is the vector of sizeM(M + 1)/2 of all non-zero entries in the matrixA.
The set of parameters describing the random vector Λ is λ̂ = (λ,α) The full data model then is
written as

y(i) = f(λ+ A(α)ξ⃗;x(i)) + ϵi (4.32)

or
y(i) = fλ̂(x

(i); ξ⃗) + σ2ξM+i, (4.33)

where fλ̂(x; ξ⃗) is a random process induced by this model error embedding. The mean and
variance of this process are defined as µλ̂(x) and σ2

λ̂
(x), respectively. To represent this random

process and allow easy access to its first two moments, we employ a non-intrusive spectral
projection (NISP) approach to propagate uncertainties in f via Gauss-Hermite PC expansion,

y(i) =
K−1∑
k=0

fik(λ,α)Ψk(ξ⃗) + σ2ξM+i, (4.34)

for a fixed order p expansion, leading toK = (p+M)!/(p!M !) terms.

The parameter estimation problem for λ is now reformulated as a parameter estimation for
λ̂ = (λ,α). This inverse problem is solved via Bayesian machinery. Bayes’ formula reads

p(λ̂|D)︸ ︷︷ ︸
posterior

∝ p(D|λ̂)︸ ︷︷ ︸
likelihood

p(λ̂)︸︷︷︸
prior

, (4.35)

where the key function is the likelihood function

LD(λ̂) = p(D|λ̂) (4.36)

that connects the prior distribution of the parameters of interest to the posterior one. The options for
the likelihood are given further in this section. For details on the likelihood construction, see [47]. To

58

alleviate the invariance with respect to sign-flips, we use a prior that enforces αMi > 0 for
i = 1, . . . ,M . Also, one can either fix σ2 or infer it together with λ̂.

Exact computation of the potentially high-dimensional posterior (4.35) is usually problematic, therefore
we employ Markov chain Monte Carlo (MCMC) algorithm for sampling from the posterior. Model f
and the exact form of the likelihood are determined using command line arguments. Below we detail
the currently implemented model types.

Model types: -f <modeltype>

• prop : for x ∈ IR1 and λ ∈ IR1, the function is defined as f(λ;x) = λx.

• prop_quad : for x ∈ IR1 and λ ∈ IR2, the function is defined as f(λ;x) = λ1x+ λ2x
2.

• exp : for x ∈ IR1 and λ ∈ IR2, the function is defined as f(λ;x) = eλ1+λ2x.

• exp_quad : for x ∈ IR1 and λ ∈ IR3, the function is defined as f(λ;x) = eλ1+λ2x+λ3x2 .

• const : for any x ∈ IRn and λ ∈ IR1, the function is defined as f(λ;x) = λ.

• linear : for x ∈ IR1 and λ ∈ IR2, the function is defined as f(λ;x) = λ1 + λ2x.

• bb : the model is a ‘black-box’ run via system-call of a script named bb.x that takes
files p.dat (matrixR×D for λ) and x.dat (matrix L× S for x) and returns output y.dat
(matrixR× L for f). This effectively simulates f(λ;x) at anyR values of λ and L values of x.

• heat_transfer1 : a custom model designed for a tutorial case of a heat conduction problem:
for x ∈ IR1 and λ ∈ IR1, the model is defined as f(λ;x) = xdw

Awλ
+ T0, where dw = 0.1,

Aw = 0.04 and T0 = 273.

• heat_transfer2 : a custom model designed for a tutorial case of a heat conduction problem:
for x ∈ IR1 and λ ∈ IR2, the model is defined as f(λ;x) = xQ

Awλ1
+ λ2, whereAw = 0.04 and

Q = 20.0.

• frac_power : a custom function for testing. For x ∈ IR1 and λ ∈ IR4, the function is defined
as f(λ;x) = λ0 + λ1x+ λ2x

2 + λ3(x+ 1)3.5.

• exp_sketch : exponential function to enable the sketch illustrations of model error
embedding approach, for x ∈ IR1 and λ ∈ IR2, the model is defined as f(λ;x) = λ2e

λ1x − 2.

• inp : a function that produces the input components as output. That is f(λ;x(i)) = λi, for
x ∈ IR1 and λ ∈ IRd, assuming exactly d values for the design variables x (these are usually
simply indices xi = i for i = 1, . . . , d).

• pcl : the model is a Legendre PC expansion that is linear with respect to coefficients λ, i.e.
f(λ;x) =

∑
α∈S λαΨα(x).

• pcx : the model is a Legendre PC expansion in both x and λ, i.e. z = (λ,x), and
f(λ;x) =

∑
α∈S cαΨα(z)

• pc : the model is a set of Legendre polynomial expansions for each value of x: i.e.
f(λ;x(i)) =

∑
α∈S cα,iΨα(λ).

59

• pcs : same as pc, only the multi-index set S can be different for each x(i), i.e.
f(λ;x(i)) =

∑
α∈Si

cα,iΨα(λ).

Likelihood construction is the key step and the biggest challenge in model parameter inference.

Likelihood types: -l <liktype>

• classical : No α, orM = 0. This is a classical, least-squares likelihood

logLD(λ) = −
L∑
i=1

(y(i) − f(λ;x(i)))2

2σ2
− L

2
log (2πσ2), (4.37)

• koh : Kennedy-O’Hagan likelihood with explicit additive representation of model
discrepancy [31].

• full : This is the exact likelihood

LD(λ̂) = πhλ̂
(y(1), . . . , y(L)), (4.38)

where hλ̂ is the random vector with entries fλ̂(x
(i); ξ⃗) + σ2ξM+i. When there is no data noise,

i.e. σ = 0, this likelihood is degenerate [47]. Typically, computation of this likelihood requires a
KDE step for each λ̂ to evaluate a high-d PDF πhλ̂

(·).

• marg : Marginal approximation of the exact likelihood

LD(λ̂) =
L∏
i=1

πhλ̂,i
(y(i)), (4.39)

where hλ̂,i is the i-th component of hλ̂. This requires one-dimensional KDE estimates
performed for allN dimensions.

• mvn : Multivariate normal approximation of the full likelihood

logLD(λ̂) = −1

2
(y − µλ̂)

TΣ−1

λ̂
(y − µλ̂)−

L

2
log (2π)− 1

2
log (detΣλ̂), (4.40)

where mean vector µλ̂ and covariance matrix Σλ̂ are defined as µi
λ̂
= µλ̂(x

(i)) and
Σλ̂

ij = E(hλ̂,i − µλ̂(x
(i)))(hλ̂,j − µλ̂(x

(j)))T , respectively.

• gausmarg : This likelihood further assumes independence in the gaussian approximation,
leading to

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x
(i)))2

2
(
σ2
λ̂
(x(i)) + σ2

) − 1

2

L∑
i=1

log 2π
(
σ2
λ̂
(x(i)) + σ2

)
. (4.41)

60

• abcm : This likelihood enforces the mean of fλ̂ to match the mean of data

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x
(i)))2

2ϵ2
− 1

2
log (2πϵ2), (4.42)

• abc : This likelihood enforces the mean of fλ̂ to match the mean of data and the
standard deviation to match the average spread of data around mean within some factor γ

logLD(λ̂) = −
L∑
i=1

(y(i) − µλ̂(x
(i)))2 +

(
γ|y(i) − µλ̂(x

(i))| −
√
σ2
λ̂
(x(i)) + σ2

)2
2ϵ2

−1

2
log (2πϵ2),

(4.43)

Input files:

For the complete list, type model_inf -h

• -x <xdatafile> : L× S matrix of x

• -y <ydatafile> : L× E matrix of y, usuallyE = 1, but one can provide more than one
data point per design parameter x

• -t <xpredfile> : L′ × S matrix of x values used for posterior prediction, L′ ̸= L in
general. Defaults value (i.e. no flag given) is xpredfile=xdatafile. Most frequently, this is a
file with a dense grid in the x-space.

Output files:

• fmeans.dat : L′ × 2 mean predictions. The first column is the posterior mean, the second
column is the MAP.

• fvars.dat : L′ × 3 prediction variance components. The first column is the posterior
mean of the variance, the second column is the posterior variance of the mean, and the third
column is the MAP of the variance.

• pmeans.dat : d× 2 mean parameter values. The first column is the posterior mean, the
second column is the MAP.

• pvars.dat : d× 3 parameter variance components. The first column is the posterior mean
of the variance, the second column is the posterior variance of the mean, and the third column is
the MAP of the variance.

• datavars.dat : L× 2 data variance values. The first column is the posterior mean,
while the second column is MAP.

• chain.dat : The raw MCMC chain file of sizeNMCMC × (d′ + 3). The first
column is simply the MCMC step number, the last two are the Metropolis-Hastings’ ratio α and
the log-posterior value, while the rest of the columns are the chain parameters. Chain
dimensionality is d′.

61

• pchain.dat : P × d′ ‘thinned’ posterior samples, where P = int(NMCMC/ne),
and the thinning factor ne is given by the input -n <every>

• mapparam.dat : d′ × 1 vector of chain’s MAP values

• fmeans_sams.dat : L′ × P ‘thinned’ posterior samples of the mean predictions

• parampccfs.dat : K × P ‘thinned’ posterior samples of the input PC coefficients

4.2.7. pce_eval:

This utility evaluates PC-related functions given input file xdata.dat and return the evaluations in an
output file ydata.dat. It also provides gradient information in an output file gdata.dat for only LU
PC function type. The keyword options are:

Function types: -f <fcn_type>

• PC : Evaluates the function f(ξ⃗) =
∑K

k=0 ckΨk(ξ⃗) given a set of ξ⃗, the PC type,
dimensionality, order and coefficients.

• PC_mi : Evaluates the function f(ξ⃗) =
∑K

k=0 ckΨk(ξ⃗) given a set of ξ⃗, the PC type,
multiindex and coefficients.

• PCmap : Evaluates ‘map’ functions from a germ of one PC type to another. That is PC1 to PC2
is a function η⃗ = f(ξ⃗) = C−1

2 C1(ξ⃗1), whereC1 andC2 are the cumulative distribution
functions (CDFs) associated with the PDFs of PC1 and PC2, respectively. For example,
HG→LU is a map from standard normal random variable to a uniform random variable in
[−1, 1].

4.2.8. pce_quad:

This utility constructs a PC expansion from a given set of samples. Given a set ofN samples {x(i)}Ni=1

of a random d-variate vector X⃗ , the goal is to build a PC expansion

X⃗ ≃
K∑
k=0

ckΨk(ξ⃗), (4.44)

where d is the stochastic dimensionality, i.e. ξ⃗ = (ξ1, . . . , ξd). We use orthogonal projection method,
i.e.

ck =
⟨X⃗Ψk(ξ⃗)⟩
⟨Ψ2

k(ξ⃗)⟩
=

⟨G⃗(ξ⃗)Ψk(ξ⃗)⟩
⟨Ψ2

k(ξ⃗)⟩
. (4.45)

62

The denominator can be precomputed analytically or numerically with high precision. The key map
G⃗(ξ⃗) in the numerator is constructed as follows. We employ the Rosenblatt transformation,
constructed by shifted and scaled successive conditional cumulative distribution functions (CDFs),

η1 = 2F1(X1)− 1

η2 = 2F2|1(X2|X1)− 1

η3 = 2F3|2,1(X3|X2, X1)− 1 (4.46)
...

ηd = 2Fd|d−1,...,1(Xd|Xd−1, . . . , X1)− 1.

maps any joint random vector to a set of independent standard Uniform[-1,1] random variables.
Rosenblatt transformation is the multivariate generalization of the well-known CDF transformation,
stating that F (X) is uniformly distributed if F (·) is the CDF of random variableX . The shorthand
notation is η⃗ = R⃗(X⃗). Now denote the shifted and scaled univariate CDF of the ‘germ’ ξi byH(·), so
that by the CDF transformation reads as H⃗(ξ⃗) = η⃗. For example, for Legendre-Uniform PC, the germ
itself is uniform andH(·) is identity, while for Gauss-Hermite PC the functionH(·) is shifted and
scaled version of the normal CDF. Now, we can write the connection between X⃗ and ξ⃗ by

R⃗(X⃗) = H⃗(ξ⃗), or X⃗ = R⃗−1 ◦ H⃗︸ ︷︷ ︸
G⃗

(ξ⃗) (4.47)

While the computation of H⃗ is done analytically or numerically with high precision, the main challenge
is to estimate R⃗−1. In practice the exact joint cumulative distribution F (x1, . . . ,xd) is generally not
available and is estimated using a standard Kernel Density Estimator (KDE) using the samples available.
GivenN samples {x(i)}Ni=1 , the KDE estimate of its joint probability density function is a sum ofN
multivariate gaussian functions centered at each data point x(i):

pX⃗(x) =
1

Nσd(2π)d/2

N∑
i=1

exp

(
−(x− x(i))T (x− x(i))

2σ2

)
(4.48)

or

pX⃗1,...,X⃗d
(x1, . . . ,xd) =

1

Nσd(2π)d/2

N∑
i=1

exp

(
−(x1 − x

(i)
1)2 + · · ·+ (xd − x

(i)
d)2

2σ2

)
, (4.49)

where the bandwidth σ should be chosen to balance smoothness and accuracy, see [50, 51] for
discussions of the choice of σ. Note that ideally σ should be chosen to be dimension-dependent,
however the current implementation uses the same bandwidth for all dimensions.

63

Now the conditional CDF is KDE-estimated by

Fk|k−1,...,1(xk|xk−1, . . . ,x1) =

∫ xk

−∞
pk|k−1,...,1(x

′

k|xk−1, . . . ,x1)dx
′

k

=

∫ xk

−∞

pk,...,1(x
′

k,xk−1, . . . ,x1)

pk−1,...,1(xk−1, . . . ,x1)
dx

′

k

≈ 1

σ
√
2π

∫ xk

−∞

N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(x

′
k−x

(i)
k)2

2σ2

)
N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(xk−1−x

(i)
k−1)

2

2σ2

)dx′

k

=

∫ xk

−∞

N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(xk−1−x

(i)
k−1)

2

2σ2

)
× 1

σ
√
2π

exp

(
− (x

′
k−x

(i)
k)2

2σ2

)
N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(xk−1−x

(i)
k−1)

2

2σ2

) dx
′

k

=

N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(xk−1−x

(i)
k−1)

2

2σ2

)
× Φ

(
xk−x

(i)
k

σ

)
N∑
i=1

exp

(
− (x1−x

(i)
1)2+···+(xk−1−x

(i)
k−1)

2

2σ2

) , (4.50)

where Φ(z) is the CDF of a standard normal random variable. Note that the numerator in (4.50) differs

from the denominator only by an extra factor Φ
(

xk−x
(i)
k

σ

)
in each summand, allowing an efficient

computation scheme.

The above Rosenblatt transformation maps the random vector x to a set of i.i.d. uniform random
variables η⃗ = (η1, . . . , ηd). However, the formula (4.47) requires the inverse of the Rosenblatt
transformation. Nevertheless, the approximate conditional distributions are monotonic, hence they are
guaranteed to have an inverse function, and it can be evaluated rapidly with a bisection method.

With the numerical estimation of the map (4.47) available, we can proceed to evaluation the numerator
of the orthogonal projection (4.45)

⟨G⃗(ξ⃗)Ψk(ξ⃗)⟩ =
∫
ξ⃗

G⃗(x)Ψk(x)πξ⃗(ξ⃗)dξ⃗, (4.51)

where πξ⃗(ξ⃗) is the PDF of ξ⃗. The projection integral (4.51) is computed via quadrature integration∫
ξ⃗

G⃗(ξ⃗)Ψk(ξ⃗)πξ⃗(ξ⃗)dξ⃗ ≈
Q∑

q=1

G⃗(ξ⃗q)Ψk(ξ⃗q)wq =

Q∑
q=1

R⃗−1(H⃗(ξ⃗q))Ψk(ξ⃗q)wq, (4.52)

where (ξ⃗q, wq) are Gaussian quadrature point-weight pairs for the weight function πξ⃗(ξ⃗).

64

4.2.9. pce_resp:

This utility performs orthogonal projection given function evaluations at quadrature points, in order to
arrive at polynomial chaos coefficients for a Total-Order PC expansion

f(ξ⃗) ≈
∑

||α||1≤p

cαΨα(ξ⃗) ≡ g(ξ⃗). (4.53)

The orthogonal projection computed by this utility is

cα =
1

⟨Ψ2
α⟩

∫
ξ⃗

f(ξ⃗)Ψα(ξ⃗)πξ⃗(ξ⃗)dξ⃗ ≈
1

⟨Ψ2
α⟩

Q∑
q=1

wqf(ξ⃗
(q))Ψα(ξ⃗

(q)). (4.54)

Given the function evaluations f(ξ⃗(q)) and precomputed quadrature (ξ⃗(q), wq), this utility outputs the
PC coefficients cα, PC evaluations at the quadrature points g(ξ⃗(q)) as well as, if requested by a
command line flag, a quadrature estimate of the relative L2 error

||f − g||2
||f ||2

≈

√√√√∑Q
q=1wq(f(ξ⃗(q))− g(ξ⃗(q)))2∑Q

q=1wqf(ξ⃗(q))2
. (4.55)

Note that the selected quadrature may not compute the error accurately, since the integrated functions
are squared and can be higher than the quadrature is expected to integrate accurately. In such cases, one
can use the pce_eval app to evaluate the PC expansion separately and compare to the function
evaluations with an ℓ2 norm instead.

4.2.10. pce_rv:

This utility generates PC-related random variables (RVs). The keyword options are:

RV types: -w <type>

• PC : Generates samples of univariate random variable
∑K

k=0 ckΨk(ξ⃗) given the PC type,
dimensionality, order and coefficients.

• PCmi : Generates samples of univariate random variable
∑K

k=0 ckΨk(ξ⃗) given the PC type,
multiindex and coefficients.

• PCvar : Generates samples of multivariate random variable ξ⃗ that is the germ of a given PC
type and dimensionality.

65

4.2.11. pce_sens:

This utility evaluates Sobol sensitivity indices of a PC expansion with a given multiindex and a
coefficient vector. It computes main, total and joint sensitivities, as well as variance fraction of each PC
term individually. Given a PC expansion

∑
I cαΨα(ξ⃗), the computed moments and sensitivity indices

are:

• mean: m = c0⃗

• total variance: V =
∑

α ̸=0⃗ c
2
α⟨Ψ2

α⟩

• variance fraction for the basis term α: Vα = c2α⟨Ψ2
α⟩

V

• main Sobol sensitivity index for dimension i: Si =
1
V

∑
α∈ISi

c2α⟨Ψ2
α⟩, where ISi is the set of

multiindices that include only dimension i.

• total Sobol sensitivity index for dimension i: ST
i = 1

V

∑
α∈ITi

c2α⟨Ψ2
α⟩, where ITi is the set of

multiindices that include dimension i, among others.

• joint-total Sobol sensitivity index for dimension pair (i, j): ST
ij =

1
V

∑
α∈ITij

c2α⟨Ψ2
α⟩, where ITij

is the set of multiindices that include dimensions i and j, among others. Note that this is
somewhat different from the conventional definition of joint sensitivity indices, which presumes
terms that include only dimensions i and j.

4.2.12. pdf_cl:

Kernel density estimation (KDE) with Gaussian kernels given a set of samples to evaluate probability
distribution function (PDF). The procedure relies on approximate nearest neighbors algorithm with
fast improved Gaussian transform to accelerate KDE by only computing Gaussians of relevant
neighbors. Our tests have shown 10-20x speedup compared to Python’s default KDE package. Also, the
app allows clustering enhancement to the data set to enable cluster-specific bandwidth selection -
particularly useful for multimodal data. User provides the samples’ file, and either a) number of grid
points per dimension for density evaluation, or b) a file with target points where the density is
evaluated, or c) a file with a hypercube limits in which the density is evaluated.

4.2.13. regression:

This utility performs regression with respect to a linear parametric expansions such as PCs or RBFs.
Consider a dataset (x(i), y(i))Ni=1 that one tries to fit a basis expansion with:

y(i) ≈
K∑
k=1

ckPk(x
(i)), (4.56)

for a set of basis functions Pk(x). This is a linear regression problem, since the object of interest is the
vector of coefficients c = (c1, . . . , ck), and the summation above is linear in c. This app provides
various methods of obtaining the expansion coefficients, using different kinds of bases.

66

The key implemented command line options are

Basis types: -f <basistype>

• PC : Polynomial Chaos bases of total-order truncation

• PC_MI : Polynomial Chaos bases of custom multiindex truncation

• POL : Monomial bases of total-order truncation

• POL_MI : Monomial bases of custom multiindex truncation

• RBF : Radial Basis Functions, see e.g. [38]

Regression methods: -f <meth>

• lsq : Bayesian least-squares, see [46] and more details below.

• wbcs : Weighted Bayesian compressive sensing, see [49].

Although the standard least squares is commonly used and well-documented elsewhere, we detail here
the specific implementation in this app, including the Bayesian interpretation.

Define the data vector y = (y(1), . . . , y(N)), and the measurement matrix P of sizeN ×K with
entries Pik = Pk(x

(i)). The regularized least-squares problem is formulated as

argmin
c

||y − Pc||2 + ||Λc||2︸ ︷︷ ︸
R(c)

(4.57)

with a closed form solution
ĉ = (P TP +Λ)−1︸ ︷︷ ︸

Σ

P Ty (4.58)

where Λ = diag(
√
λ1, . . . ,

√
λK) is a diagonal matrix of non-negative regularization weights

λi ≥ 0.

The Bayesian analog of this, detailed in [46], infers coefficient vector c and data noise variance σ2, given
data y, employing Bayes’ formula

Posterior︷ ︸︸ ︷
p(c, σ2|y) ∝

Likelihood︷ ︸︸ ︷
p(y|c, σ2)

Prior︷ ︸︸ ︷
p(c, σ2) (4.59)

The likelihood function is associated with i.i.d. Gaussian noise model y − Pc ∼ N(0, σ2IN), and is
written as,

p(y|c, σ2) ≡ Lc,σ2(y) = (2πσ2)−
N
2 exp

(
− 1

2σ2
||y − Pc||2

)
(4.60)

Further, the prior p(c, σ2) is written as a product of a zero-mean Gaussian prior on c and an
inverse-gamma prior on σ2:

p(c, σ2) =

(
K∏
k=1

λk
2π

) 1
2

exp

(
−1

2
||Λc||2

)
︸ ︷︷ ︸

p(c)

(σ2)−α−1 exp

(
− β

σ2

)
︸ ︷︷ ︸

p(σ2)

(4.61)

67

The posterior distribution then takes a form of normal-scaled inverse gamma distribution which, after
some re-arranging, is best described as

p(c|σ2,y) ∼ MVN(ĉ, σ2Σ), (4.62)

p(σ2|y) ∼ IG

α +
N −K

2︸ ︷︷ ︸
α∗

, β +
R(ĉ)

2︸ ︷︷ ︸
β∗

 (4.63)

where ĉ and Σ, as well as the residualR(·) are defined via the classical least-squares problem (4.57) and

(4.58). Thus, the mean posterior value of data variance is σ̂2 =
β+

R(ĉ)
2

α+N−K
2

−1
. Also, note that the residual

can be written asR(ĉ) = yT
(
IN − P

(
P TP +Λ

)−1
P T
)
y. One can integrate out σ2 from (4.61)

to arrive at a multivariate t-distribution

p(c|y) ∼MV T

(
ĉ,
β∗

α∗Σ, 2α
∗
)

(4.64)

with a mean ĉ and covariance α∗

α∗−2
Σ.

Now, the pushed-forward process at new values xwould be, defining P (x) = (P1(x), . . . , Pk(x)), a
Student-t process with mean µ(x) = P (x)ĉ, scaleC(x, x′) = β∗

α∗P (x)ΣP (x′) and
degrees-of-freedom 2α∗.

Note that, currently, Jeffrey’s prior for p(σ2) = 1/σ2 is implemented, which corresponds to the case of
α = β = 0. We are currently implementing more flexible user-defined input for α and β. In particular,
in the limit of β = σ2

0α → ∞, one recovers the case with a fixed, predefined data noise variance σ2
0 .

4.2.14. sens:

This utility performs a series of tasks for for the computation of Sobol indices. Some theoretical
background on the statistical estimators employed here is given in Chapter 5.13. This utility can be used
in conjunction with utility trdSpls which generates truncated normal or log-normal random samples.
It can also be used to generate uniform random samples by selecting a truncated normal distribution
and a suitably large standard deviation.

In addition to the -h flag, it has the following command line options:

• -a <action>: Action to be performed by this utility

– splFO: assemble samples for first order Sobol indices

– idxFO: compute first order Sobol indices

– splTO: assemble samples for total order Sobol indices

– idxTO: compute total order Sobol indices

– splJnt: assemble samples for joint Sobol indices

68

– idxJnt: compute joint Sobol indices

• -d <ndim>: Number of dimensions

• -n <ndim>: Number of dimensions

• -u <spl1>: name of file holding the first set of samples, nspl×ndim

• -v <spl2>: name of file holding the second set of samples, nspl×ndim

• -x <mev>: name of file holding model evaluations

• -p <pfile>: name of file possibly holding a custom list of parameters for Sobol indices

4.3. PYTHON MODULES

4.3.1. Polynomial Chaos Expansion Tools

Python tools for polynomial chaos expansions are located in PyUQTk/PyPCE/pce_tools.py. This is
a file of Python wrappers for many C++ operations. These capabilities are exemplified in
examples/heat_transfer_window/ and examples/surrogate_genz/.

4.3.2. Bayesian Evidence Estimation

This capability is currently within the UQTk inference Python module, and the file is located at
PyUQTk/inference/evidence_solvers.py.

Let λ denote uncertain model parameters that we are interested in inferring, y the observation data, and
M the assumed model. Bayes’ Theorem for the parameter λ conditioned on using the model M is

p(λ|y,M) =
p(y|λ,M)p(λ|M)

p(y|M)
, (4.65)

where, with some abuse of notation, p(·) denotes either probability density function (PDF) for a
continuous random variable or probability mass function (PMF) for a discrete random variable. Here,
p(λ|M) is known as the prior, p(y|λ,M) the likelihood, p(λ|y,M) the posterior, and p(y|M) the
evidence.

The evidence is very important for Bayesian model selection. Given a candidate model Mk, we can
write Bayes’ rule for the model as

p(Mk|y) =
p(y|Mk)p(Mk)

p(y)
. (4.66)

The ratio of model posteriors between models M1 and M2 is then

p(M1|y)
p(M2|y)

=
p(y|M1)p(M1)

p(y|M2)p(M2)
. (4.67)

69

If further assuming uniform prior across the models (i.e., p(M1) = p(M2)), it reduces to

p(M1|y)
p(M2|y)

=
p(y|M1)

p(y|M2)
. (4.68)

The RHS of (4.68), being the ratio of model likelihoods (which is also the ratio of evidence terms as
defined in (4.65)) is called Bayes factor between M1 and M2.

Since it is often more numerically stable to work with log values of Bayes’ Theorem terms, this module
seeks to estimate the natural logarithm of the evidence, ln p(y|M), given a model M. We describe the
available functions below.

4.3.2.1. LikelihoodMC_PriorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using prior
sampling:

p(y|M) =

∫
λ

p(y|λ,M)p(λ|M) dλ ≈ 1

N

N∑
i=1

p
(
y|λ(i),M

)
. (4.69)

Here λ(i) ∼ p(λ|M) are samples drawn from the prior.

Notes: Requires likelihood values for prior samples. May be inefficient if posterior is very “small”
compared to prior, adaptive importance sampling recommended.

Inputs:

• ln_likelihood — vector ofN values of ln p(y|λ(i),M) corresponding to the prior samples
λ(i)

Outputs:

• ln p(y|M) estimate

4.3.2.2. ImportanceLikelihoodMC_PosteriorSamples:

This function estimates the evidence via Monte Carlo marginalization of the likelihood using
importance sampling:

p(y|M) =

∫
λ

p(y|λ,M)
p(λ|M)

pb(λ|M)
pb(λ|M) dλ ≈ 1

N

N∑
i=1

p
(
y|λ(i),M

) p (λ(i)|M)
pb (λ(i)|M)

. (4.70)

Here pb(λ|M) is a biasing distribution. In this implementation, we choose it to be a Gaussian
approximation to the posterior constructed using posterior sample moments, i.e.,
pb(λ|M) = pG(λ|y,M) ∼ N (µ̃p, Σ̃p) where µ̃p and Σ̃p are sample mean and covariance computed
from posterior samples. λ(i) ∼ pb(λ|M) are samples drawn from this biasing distribution.

70

Notes: Requires posterior samples, and the ability to evaluate prior and likelihood PDFs at new
points.

The function works in two stages. The first stage involves constructing the biasing distribution and
generating samples from that distribution.

Stage 1 inputs:

• posterior_samples — array of posterior samples (each row is a sample)

• n_importance_samples — number samples requested from the biasing distribution

• stage — set to 1 for stage 1

Stage 1 outputs:

• importance_samples — array of samples from the biasing distribution (each row is a sample)

• importance_samples_ln_PDF — vector of ln pb(λ(i)|M) values corresponding to these
samples

At this point, the user needs to externally compute and provide the ln-prior and ln-likelihood values for
these samples and pass them back into the function. The second stage can then estimate the
ln-evidence.

Stage 2 inputs:

• ln_prior — vector of ln p(λ(i)|M) values corresponding to the biasing samples generated in
stage 1

• ln_likelihood — vector of ln p(y|λ(i)|M) values corresponding to the biasing samples
generated in stage 1

• ln_importance_input — pass back in the output importance_samples_ln_PDF
generated from stage 1 without modifications

• stage — set to 2 for stage 2

Stage 2 outputs:

• ln p(y|M) estimate

4.3.2.3. PosteriorGaussian_PosteriorSamples:

This function estimates the evidence via Gaussian approximation using posterior sample moments:

p(y|M) =
p(y|λ,M)p(λ|M)

p(λ|y,M)
≈ p(y|λ,M)p(λ|M)

p̃(λ|y,M)
. (4.71)

Here, p̃(λ|y,M) is an estimate to the posterior constructed from a Gaussian approximation using
posterior sample moments, i.e., pb(λ|M) = pG(λ|y,M) ∼ N (µ̃p, Σ̃p) where µ̃p and Σ̃p are sample
mean and covariance computed from posterior samples. The above expression is valid for any λ, and we

71

can evaluate it for each posterior sample we already have; the function returns the mean value of 4.71
evaluated for all such samples.

Notes: Requires posterior samples, and the prior and likelihood PDF values for those samples.

Inputs:

• posterior_samples — array of posterior samples (each row is a sample)

• ln_prior — vector of ln p(λ(i)|M) values corresponding to the posterior samples

• ln_likelihood — vector of ln p(y|λ(i)|M) values corresponding to the posterior samples

Outputs:

• ln p(y|M) estimate

4.3.2.4. Harmonic_PosteriorSamples:

This function estimates the evidence via the Harmonic approximation formula:

p(y|M) ≈

{
1

N

N∑
i=1

1

p (y|λ(i),M)

}−1

. (4.72)

Here λ(i) ∼ p(λ|y,M) are samples from the posterior.

Notes: Requires likelihood values for posterior samples. Poor numerical stability observed, often yields
NaN.

Inputs:

• ln_likelihood — vector of ln p(y|λ(i)|M) values corresponding to the posterior samples

Outputs:

• ln p(y|M) estimate

72

5. EXAMPLES

The primary intended use for UQTk is as a library that provides UQ functionality to numerical
simulations. To aid the development of UQ-enabled simulation codes, some examples of programs that
perform common UQ operations with UQTk are provided with the distribution. These examples can
serve as a template to be modified for the user’s purposes. In some cases, e.g. in sampling-based
approaches where the simulation code is used as a black-box entity, the examples may provide enough
functionality to be used directly, with only minor adjustments. Below is a brief description of the main
examples that are currently in the UQTk distribution. For all of these, make sure the environment
variable UQTK_INS is set and points upper level directory of the UQTk install directory, e.g. the
keyword installdir described in the installation section. This path also needs to be added to
environment variable PYTHONPATH to access the Python scripts.

5.1. ELEMENTARY OPERATIONS

Overview

This set of examples is located under examples/ops. It illustrates the use of UQTk for elementary
operations on random variables that are represented with Polynomial Chaos (PC) expansions.

Description

This example can be run from the command-line:

./Ops.x

followed by

./plot_pdf.py samples.a.dat

./plot_pdf.py samples.loga.dat

to plot select probability distributions based on samples from Polynomial Chaos Expansions (PCE)
utilized in this example.

Another example compares the Taylor series to the integration approach for computing the natural
logarithm of a PCE:

73

./LogComp.x

followed by

./plot_logs.py

to plot the comparison in the pdf of the natural log of a.

The script test_all.sh runs through all of these commands.

Ops.x step-by-step

• Wherever relevant the PCSet class implements functions that take either “double *” arguments or
array container arguments. The array containers, named “Array1D”, “Array2D”, and“Array3D”,
respectively, are provided with the UQTk library to streamline the management of data
structures.

1. Instantiate a PCSet class for a 2nd order 1D PCE using Hermite-Gauss chaos.
int ord = 2;
int dim = 1;
PCSet myPCSet("ISP",ord,dim,"HG");

2. Initialize coefficients for HG PCE expansion â given its mean and standard deviation:
double ma = 2.0; // Mean
double sa = 0.1; // Std Dev
myPCSet.InitMeanStDv(ma,sa,a);

â =
P∑

k=0

akΨk(ξ), a0 = µ, a1 =
σ√
⟨ψ2

1⟩
, a2 = a3 = . . . = 0

3. Initialize b̂ = 2.0ψ0(ξ) + 0.2ψ1(ξ) + 0.01ψ2(ξ) and subtract b̂ from â:
b[0] = 2.0;
b[1] = 0.2;
b[2] = 0.01;
myPCSet.Subtract(a,b,c);

The subtraction is a term by term operation: ck = ak − bk

4. Product of PCE’s, ĉ = â · b̂:
myPCSet.Prod(a,b,c);

ĉ =
P∑

k=0

ckΨk(ξ) =

(
P∑

k=0

akΨk(ξ)

)(
P∑

k=0

bkΨk(ξ)

)

ck =
P∑
i=0

P∑
j=0

Cijkaibj, Cijk =
⟨ψiψjψk⟩
⟨ψ2

k⟩

The triple productCijk is computed and stored when the PCSet class is instantiated.

74

5. Exponential of a PCE, ĉ = exp(â) is computed using a Taylor series approach
myPCSet.Exp(a,c);

ĉ = exp(â) = exp(a0)

(
1 +

NT∑
n=0

d̂n

n!

)
(5.1)

where

d̂ = â− a0 =
P∑

k=1

ak (5.2)

The number of termsNT in the Taylor series expansion are incremented adaptively until an error
criterion is met (relative magnitude of coefficients compared to the mean) or the maximum
number of terms is reached. Currently, the default relative tolerance and maximum number of
Taylor terms are 10−6 and 500. This values can be changed by the user using public PCSet
methods SetTaylorTolerance and SetTaylorTermsMax, respectively.

6. Division, ĉ = â/b̂:
myPCSet.Div(a,b,c);

Internally the division operation is cast as a linear system, see item 4, â = b̂ · ĉ, with unknown
coefficients ck and known coefficients ak and bk. The linear system is sparse and it is solved with a
GMRES iterative solver provided by NETLIB

7. Natural logarithm, ĉ = log(â):
myPCSet.Log(a,c);

Currently, two methodologies are implemented to compute the logarithm of a PCE: Taylor series
expansion and an integration approach. For more details see Debusschere et. al. [11].

8. Draw samples from the random variable â represented as a PCE:
myPCSet.DrawSampleSet(aa,aa_samp);

Currently “Ops.x” draws sample from both â and log(â) and saves the results to files
“samples.a.dat” and “samples.loga.dat”, respectively.

9. The directory contains a python script that computes probability distributions from samples via
Kernel Density Estimate (KDE, also see Lecture #1) and generates two plots, “samples.a.dat.pdf”
and “samples.loga.dat.pdf”, also shown in Fig. 5-1.

75

1 2 3 4 5 6 7

â

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
D
F
(â

)

optimal
optimal/2
optimal*2

0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

log(â)

0

1

2

3

4

5

6

7

8

9

P
D
F
(l
o
g(
â
))

optimal
optimal/2
optimal*2

Figure 5-1. Probability densities for â and log(â) computed via KDE. Results gener-
ated using several KDE bandwidths. This feature is available in the Python’s SciPy
package starting with version 0.11

5.2. POLYNOMIAL FITTING

Overview

This example is located in polynomial. It contains codes to generate a random polynomial data with
noise, fit a set of polynomial models to the data using Markov Chain Monte Carlo, comparing the
models to each other using model evidence, calculate the derivatives of the models with uncertainties,
and produce other plots about the model fits.

Implementation

This workflow has 3 main steps:

1. Getting the data from a random polynomial

• Ran in get_data.py

• Picks random coefficients for a third order polynomial, randomly picks 15 points, and adds
Gaussian noise.

• Relevant flags include:

– --ix <input.xml> the name of the input xml file. Default is <input.xml>

– -g flag to show a plot with the chosen polynomial and the data points

– -e flag to run with the same coefficients used in this example

2. Fitting the model to the data

• Ran in fit.py

• Uses Markov Chain Monte Carlo (MCMC) to fit the models to the data

• Relevant flags include:

76

– --ix <input.xml> the name of the input xml file. Default is input.xml

– -w <output_file> the name of the output file. Results will be printed to this file
along with the command line. Default is output.txt.

3. Postprocessing

• Ran in post.py

• Makes various types of plots and performs various calculations from the MCMC results.

• Relevant flags include:

– --ix <input.xml> the name of the input xml file. Default is <input.xml>

– -p flag to show the posterior plots

– -g flag to show the parameter graphs

– -d flag to calculate the derivatives and their uncertainties, and to make a plot.

– -v <verbosity> verbosity level. Default is 1

– --interactive flag to show plots interactively. Default is False

– --jpeg flag to save all plots as .jpg. Default is to save as .pdf

– --evidence flag to calculate the evidence values of each model and to make a plot of
all

• Plots to view:

– polynomial_all_fits.pdf shows the fits of all the models, along with the true
solution and the data used to fit the model.

– polynomial_all_fits_with_error.pdf shows the fits of all the models with
error bars visualizing standard deviation.

– polynomial_all_fits_with_error_shaded.pdf shows the fits of all the
models with shaded regions visualizing standard deviation, the true solution, and the
data used to fit the model.

– polynomial_derivatives.pdf shows the derivatives of all the models, with mean
and standard deviation.

– polynomial_importance_evidence.pdf shows the log evidence values of all the
models as calculated using Importance sampling.

– *_parameter_graphs.pdf shows the MCMC chains of all the parameters, after
the burnin and with the stride.

– *_model_data_agreement_xy_with_real.pdf shows the model with the MAP
parameters, the real polynomial, and the data points.

Other relevant files include:

77

Figure 5-2. Example output of get_data.py -g -e

• input.xml

– The input xml file where all relevant information for the fitting is stored.

• tools.py

– File where all tools for fitting are stored.

– Most notable is the class for the models.

• graph_tools.py

– File where all helper functions to plot different graphs are stored.

– These functions are general enough to be used for a variety of applications.

• full_run.sh

– Example of entire workflow run. Has all necessary flags to run the complete example

Example Outputs

This example run will do all components of full_run.sh step by step. You can run each part
individually or full_run.sh to perform all components at once.

Start in /run

78

Figure 5-3. Command line output of get_data.py

Figure 5-4. Command line output of fit.py

• ../scripts/get_data.py --ix input.xml -g -e For the example, the coefficients are
fixed to [0, 0.15,−0.65, 0.5], running without the -e flag will give 4 random integers in the
range [−10, 10] for the coefficients. It will then choose 15 random points from the range [0, 1]
and add Gaussian noise. Fig (5-2) shows the sample graph of the polynomial and chosen data
points. From the sample output shown in Fig (5-3). You can see the files that the outputs are
stored in and the real coefficients of the polynomial.

• ../scripts/fit.py --ix input.xml -w output.txt

This will use MCMC to fit all the models to the data. Fig (5-4) shows a sample output for one of
the models. A very similar output will also print out for all other tested models. This script will
also produce the files MCMC_samples_polynomial_mA.dat for all models. These files store
the MCMC sample that will be processed in the next stop.

• ../scripts/post.py -p -g --evidence -d

This will run the post processing with all of the common flag options. Many plots will be
produced including fitting graphs, derivatives graphs, and evidence value graphs. Figs (5-5) and
(5-6) show some examples. There are also many more types of graphs that are produced. See
"Plots to view" in the implementation section for a description of all plots produced.

Troubleshooting

• If get_data.py does not produce a good example polynomial:

79

m
od

el
_A

m
od

el
_B

m
od

el
_C

m
od

el
_D

m
od

el
_E

10

5

0

5

10

15

20

25

30

lo
g

ev
id

en
ce

Importance Evidence Values for polynomial

Figure 5-5. Importance Evidence Values for the Polynomial Model. As you can see,
model C has the highest evidence value, implying the best fit. This is good because
our true solution is of order 3.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

y

Uncertainty of the fit
polynomial

True solution
model_A
model_B
model_C
model_D
model_E

Figure 5-6. Here is the fitted models with uncertainties for all models. The shaded
regions show 1 standard deviation. You can also see the true solution and the data
used.

80

– Try running get_data.py a few times

– Try changing error_level in the .xml file, probably to a lower value

– Try changing the size_range in the .xml file

• If the MCMC chain is not mixing well, accepting too many/few samples:

– This is a very common place that adjustments will need to be made. Because we are
considering random data that is different each time, there many be a considerable amount
of variability in the acceptance rates and mixing of the chains.

– Try changing the value of gamma, increasing gamma will typically decrease your acceptance
rate, and decreasing gamma will typically increase your acceptance rate.

– Try increasing the number of samples, and making a longer burn-in period.

– Try changing the initial stating point of the chain

Customizing the code to your model

To customize this workflow to your own model, you only need to change input.xml and
tools.py.

In input.xml, you need to enter all relevant information about the case and the model. Follow the
same format, and see comments in file for all necessary information.

In tools.py, you need to make a new class for your models. To make a model with the same format as
the example models, all you need to do is make a child class of model_letter, with your desired
prediction function. If desired, you can also add the compute_derivative function to calculate the
derivative of the model. This function can also be edited to calculate any other desired derived quantity.
You also need to edit the make_model_object function in order to make the appropriate type of
model object.

5.3. FORWARD PROPAGATION OF UNCERTAINTY

Overview

• Located in examples/surf_rxn

• Several examples of propagating uncertainty in input parameters through a model for surface
reactions, consisting of three Ordinary Differential Equations (ODEs). Two approaches are
illustrated:

– Direct linking to the C++ UQTk libraries from a C++ simulation code:

81

* Propagation of input uncertainties with Intrusive Spectral Projection (ISP), Non
Intrusive Spectral Projection (NISP) via quadrature , and NISP via Monte Carlo
(MC) sampling.

* For more documentation, see a detailed description below

* An example can be run with ./forUQ_sr.py

– Using simulation code as a black box forward model:

* Propagation of uncertainty in one input parameter with NISP quadrature approach.

* For more documentation, see a detailed description below

* An example can be run with ./forUQ_BB_sr.py

Simulation Code Linked to UQTk Libraties

The example script forUQ_sr.py, provided with this example can perform parametric uncertainty
propagation using three methods

• NISP: Non-intrusive spectral projection using quadrature integration

• ISP: Intrusive spectral projection

• NISP_MC: Non-intrusive spectral projection using Monte-Carlo integration

The command-line usage for this example is

./forUQ_sr.py <pctype> <pcord> <method1> [<method2>] [<method3>]

For example

./forUQ_sr.py HG 3 ISP NISP

The script requires the xml input template file forUQ_surf_rxn.in.xml.templ. In this template, the
default setting for param_b is uncertain normal random variable with a standard deviation set to 10%
of the mean.

The following parameters are defined at the beginning of the file:

• pctype: The type of PC, supports ’HG’, ’LU’, ’GLG’, ’JB’

• pcord: The order of output PC expansion

• methodX: NISP, ISP or NISP_MC (More than one can be specified)

• nsam: Number of samples requested for NISP Monte-Carlo (currently hardwired in the script)

82

Description of Non-Intrusive Spectral Projection utilities (SurfRxnNISP.cpp and
SurfRxnNISP_MC.cpp)

f(ξ⃗) =
∑
k

ckΨk(ξ⃗) ck =
⟨f(ξ⃗)Ψk(ξ⃗)⟩
⟨Ψ2

k(ξ⃗)⟩

⟨f(ξ⃗)Ψk(ξ⃗)⟩ =
∫

f(ξ⃗)Ψk(ξ⃗)π(ξ⃗)dξ⃗ ≈

[∑
q

f(ξ⃗q)Ψk(ξ⃗q)wq

]
︸ ︷︷ ︸

NISP

or

[
1

N

∑
s

f(ξ⃗s)Ψk(ξ⃗s)

]
︸ ︷︷ ︸

NISP_MC

These codes implement the following workflows

1. Read XML file

2. Create a PC object with or without quadrature

• NISP: PCSet myPCSet("NISP",order,dim,pcType,0.0,1.0)

• NISP_MC: PCSet myPCSet("NISPnoq",order,dim,pcType,0.0,1.0)

3. Get the quadrature points or generate Monte-Carlo samples

• NISP: myPCSet.GetQuadPoints(qdpts)

• NISP_MC: myPCSet.DrawSampleVar(samPts)

4. Create input PC objects and evaluate input parameters corresponding to quadrature points

5. Step forward in time

- Collect values for all input parameter samples

- Perform Galerkin projection or Monte-Carlo integration

- Write the PC modes and derived first two moments to files

Description of Intrusive Spectral Projection utility (SurfRxnISP.cpp)

This code implement the following workflows

1. Read XML file

2. Create a PC object for intrusive propagation
PCSet myPCSet("ISP",order,dim,pcType,0.0,1.0)

3. Represent state variables and all parameters with their PC coefficients

• u → {uk}, v → {vk}, w → {wk}, z → {zk},

• a → {ak}, b → {bk}, c → {ck}, d → {dk}, e → {ek}, f → {fk}.

83

4. Step forward in time according to PC arithmetics, e.g.
a · u→ {(a · u)k} with

a · u =

(∑
i

aiΨi(ξ⃗)

)(∑
j

ujΨj(ξ⃗)

)
=
∑
k

(∑
i,j

aiuj
⟨ΨiΨjΨk⟩

⟨Ψ2
k⟩

)
︸ ︷︷ ︸

(a·u)k

Ψk(ξ⃗)

Postprocessing Utilities - time series

./plSurfRxnMstd.py NISP

./plSurfRxnMstd.py ISP

./plSurfRxnMstd.py NISP_MC
These commands plot the time series of mean and standard deviations of all three species with all three
methods. Note, these scripts assume that the model has first been run with the methods requested so
that the corresponding data files are available. Sample results are shown in Fig. 5-7.

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method NISP

u v w

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method ISP

u v w

0 200 400 600 800 1000
Time [-]

0.0

0.2

0.4

0.6

0.8

1.0

S
p
e
ci

e
s

M
a
ss

 F
ra

ct
io

n
s

[-
]

Method NISP_MC

u v w

Figure 5-7. Time series of mean and standard deviations for u, v, and w with NISP,
ISP, and NISP_MC, respectively.

Postprocessing Utilities - PDFs
./plPDF_method.py <species> <qoi> <pctype> <pcord> <method1> [<method2>] [<method3>]
e.g.

./plPDF_method.py u ave HG 3 NISP ISP

This script samples the PC representations, then computes the PDFs of time-average (ave) or the final
time value (tf) for all three species. Sample results are shown in Fig. 5-8.

Simulation Code Employed as a Black Box

The command-line usage for the script implementing this example is given as

./forUQ_BB_sr.py --nom nomvals -s stdfac -d dim -l lev -o ord -q sp --npdf npdf
--npces npces

Note that all arguments have a default value, to the script can be run without specifying any arguments.
If desired, the following parameters can be controlled by the user through the argument list.

84

0.0 0.1 0.2 0.3 0.4 0.5
QoI: average u

0

20

40

60

80

100

120

140

P
D

F(
u
)

NISP

ISP

NISP_MC

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
QoI: average v

0

100

200

300

400

500

600

P
D

F(
v
)

NISP

ISP

NISP_MC

0.4 0.5 0.6 0.7 0.8 0.9 1.0
QoI: average w

0

20

40

60

80

100

120

P
D

F(
w

)

NISP

ISP

NISP_MC

0.0 0.1 0.2 0.3 0.4 0.5
QoI: u @ final time

0

2

4

6

8

10

12

P
D

F(
u
)

NISP

ISP

NISP_MC

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14
QoI: v @ final time

0

5

10

15

20

25

P
D

F(
v
)

NISP

ISP

NISP_MC

0.4 0.5 0.6 0.7 0.8 0.9 1.0
QoI: w @ final time

0

5

10

15

20

25

P
D

F(
w

)

NISP

ISP

NISP_MC

Figure 5-8. PDFs for u, v, and w; Top row shows results for average u, v, and w;
Bottom row shows results corresponding to values at the last integration step (final
time).

• nomvals: List of nominal parameter values, separated by comma if more than one value, and no
spaces. Default is one value, 20.75

• stdfac: Ratio of standard deviation/nominal parameter values. Default value: 0.1

• dim: number of uncertain input parameters. Currently this example can only handle dim = 1

• lev: No. of quadrature points per dimension (for full quadrature) or sparsity level (for sparse
quadrature). Default value: 21.

• ord: PCE order. Default value: 20

• sp: Quadrature type “full” or “sparse”. Default value: “full”

• npdf: No. of grid points for Kernel Density Estimate evaluations of output model PDF’s.
Default value 100

• npces: No. of PCE evaluations to estimate output density. Default value 105

Note: This example assumes Hermite-Gauss chaos for the model input parameters.

This script uses the following utilities, located in the bin directory under the UQTk installation path

• generate_quad: Generate quadrature points for full/sparse quadrature and several types of rules.

• pce_rv: Generate samples from a random variable defined by a Polynomial Chaos expansion
(PCE)

• pce_eval: Evaluates PCE for germ samples saved in input file “xdata.dat”.

85

• pce_resp: Constructs PCE by Galerkin projection

Sequence of computations:

1. forUQ_BB_sr.py
saves the input parameters’ nominal values and standard deviations in a diagonal matrix format
in file “pcfile”. First it saves the matrix of nominal values, then the matrix of standard deviations.
This information is sufficient to define a PCE for a normal random variable in terms of a
standard normal germ. For a one parameter problem, this file has two lines.

2. generate_quad:
Generate quadrature points for full/sparse quadrature and several types of rules. The usage with
default script arguments generate_quad -d1 -g’HG’ -xfull -p21 > logQuad.dat

This generates Hermite-Gauss quadrature points for a 21-point rule in one dimension.
Quadrature points locations are saved in “qdpts.dat” and weights in “wghts.dat” and indices of
points in the 1D space in “indices.dat”. At the end of “generate_quad” the run, file “qdpts.dat” is
copied over “xdata.dat”

3. pce_eval:
Evaluates PCE of input parameters at quadrature points, saved previously in “xdata.dat”. The
evaluation is dimension by dimension, and for each dimension the corresponding column from
“pcfile” is saved in “pccf.dat”. See command-line arguments below.
pce_eval -x’PC’ -p1 -q1 -f’pccf.dat’ -sHG >> logEvalInPC.dat

At the end of this computation, file “input.dat” contains a matrix of PCE evaluations. The
number of lines is equal to the number of quadrature points and the number of columns to the
dimensionality of input parameter space.

4. Model evaluations:
funcBB("input.dat","output.dat",xmltpl="surf_rxn.in.xml.tp3",

xmlin="surf_rxn.in.xml")
The Python function “funcBB” is defined in file “prob3_utils.py”. This evaluates the forward
model at sets of input parameters in file “input.dat” and saves the model output in “output.dat”.
For each model evaluation, specific parameters are inserted in the xml file “surf_rxn.in.xml”
which is a copy of the template in “surf_rxn.in.xml.tp3”. At the end “output.dat” is copied over
“ydata.dat”

5. pce_resp:
pce_resp -xHG -o20 -d1 -e > logPCEresp.dat

Computes a Hermite-Gauss PCE of the model output via Galerkin projection. The model
evaluations are taken from “ydata.dat”, and the quadrature point locations from “xdata.dat”.
PCE coefficients are saved in “PCcoeff_quad.dat”, the multi-index list in “mindex.dat” and these
files are pasted together in “mipc.dat”

86

0 5 10 15 20 25 30 35 40

b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u
ss
(b

)

model
quadrature points

(average u as a function of parameter b values. Location of quadrature points is shown with
circles.)

6. pce_rv:
pce_rv -w’PCvar’ -xHG -d1 -n100 -p1 -q0 > logPCrv.dat

Draw a 100 samples from the germ of the HG PCE. Samples are saved in file “rvar.dat” and also
copied to file “xdata.dat”

7. pce_eval:
pce_eval -x’PC’ -p1 -q1 -f’pccf.dat’ -sHG >> logEvalInPCrnd.dat See item 3 for details.

Results are saved “input_val.dat”.

8. Evaluate both the forward model (through the black-box script “funcBB”, see item 4) and its
PCE surrogate (see item 3) and save results to files “output_val.dat” and “output_val_pc.dat”.
Compute L2 error between the two sets of values using function “compute_err” defined in
“utils.py”

9. Sample output PCE and plot the PDF of these samples computed using either a Kernel Density
Estimate approach with several kernel bandwidths or by binning:

0.0 0.1 0.2 0.3 0.4 0.5 0.6

PC surrogate
0

1

2

3

4

5

6

P
D

F

optimal
(1/2 * optimal)
(2 * optimal)
binning

87

5.4. NUMERICAL INTEGRATION

Overview

This example is located in examples/num_integ. It contains a collection of Python scripts that can be
used to perform numerical integration on six Genz functions: oscillatory, exponential, continuous,
Gaussian, corner-peak, and product-peak. Quadrature and Monte Carlo integration methods are both
employed in this example.

Theory

In uncertainty quantification, forward propagation of uncertain inputs often involves evaluating
integrals that cannot be computed analytically. Such integrals can be approximated numerically using
either a random or a deterministic sampling approach. Of the two integration methods implemented in
this example, quadrature methods are deterministic while Monte Carlo methods are random.

Quadrature Integration

The general quadrature rule for integrating a function u(ξ) is given by:

∫
u(ξ)dξ ≈

Nq∑
i=1

qiu(ξi) (5.3)

where theNq ξ
i are quadrature points with corresponding weights qi.

The accuracy of quadrature integration relies heavily on the choice of the quadrature points. There are
countless quadrature rules that can be used to generate quadrature points, such as Gauss-Hermite,
Gauss-Legendre, and Clenshaw-Curtis.

When performing quadrature integration, one can use either full tensor product or sparse quadrature
methods. While full tensor product quadrature methods are effective for functions of low dimension,
they suffer from the curse of dimensionality. Full tensor product quadrature integration methods
requireNd quadrature points to integrate a function of dimension dwithN quadrature points per
dimension. Thus, for functions of high dimension the number of quadrature points required quickly
becomes too large for these methods to be practical. Therefore, in higher dimensions sparse quadrature
approaches, which require far fewer points, are utilized. When performing sparse quadrature
integration, rather than determining the number of quadrature points per dimension, a level is selected.
Once a level is selected, the total number of quadrature points can be determined from the dimension
of the function. For more information on quadrature integration see reference here.

88

Monte Carlo Integration

One random sampling approach that can be used to evaluate integrals numerically is Monte Carlo
integration. To use Monte Carlo integration methods to evaluate the integral of a general function u(ξ)
on the d-dimensional [0, 1]d the following equation can be used:∫

u(ξ)dξ ≈ 1

Ns

Ns∑
i=1

u(ξi) (5.4)

TheNs ξ
i are random sampling points chosen from the region of integration according to the

distribution of the inputs. In this example, we are assuming the inputs have uniform distribution. One
advantage of using Monte Carlo integration is that any number of sampling points can be used, while
quadrature integration methods require a certain number of sampling points. One disadvantage of
using Monte Carlo integration methods is that there is slow convergence. However, thisO(1√

Ns
)

convergence rate is independent of the dimension of the integral.

Genz Functions

The functions being integrated in this example are six Genz functions, and they are integrated over the
d-dimensional [0, 1]d . These functions, along with their exact integrals, are defined as follows. The
Genz parameterswi represent weight parameters and ui represent shift parameters. In the current
example, the parameterswi and ui are set to 1, with one exception. The parameterswi and ui are instead
set to 0.1 for the Corner-peak function in the sparse_quad.py file.

Model Formula: f(λ) Exact Integral:
∫

[0,1]d
f(λ)dλ

Oscillatory cos(2πu1 +
d∑

i=1

wiλi) cos (2πu1 +
1
2

d∑
i=1

wi)
d∏

i=1

2 sin(
wi
2
)

wi

Exponential exp(
d∑

i=1

wi(λi − ui))
d∏

i=1

1
wi
(exp(wi(1− ui))− exp(−wiui))

Continuous exp(−
d∑

i=1

wi|λi − ui|)
d∏

i=1

1
wi
(2− exp(−wiui)− exp(wi(ui − 1)))

Gaussian exp(−
d∑

i=1

w2
i (λi − ui)

2)
d∏

i=1

√
π

2wi
(erf(wi(1− ui)) + erf(wiui))

Corner-peak (1 +
d∑

i=1

wiλi)
−(d+1) 1

d!
d∏

i=1
wi

∑
rϵ{0,1}d

(−1)||r||1

1+
d∑

i=1
wiri

Product-peak
d∏

i=1

w2
i

1+w2
i (λi−ui)2

d∏
i=1

wi(arctan(wi(1− ui)) + arctan(wiui))

Implementation

The script set consists of three files:

• full_quad.py: a script to compare full quadrature and Monte Carlo integration methods.

89

• sparse_quad.py: a script to compare sparse quadrature and Monte Carlo integration methods.

• quad_tools.py: a script containing functions called by full_quad.py and
sparse_quad.py.

full_quad.py

This script will produce a graph comparing full quadrature and Monte Carlo integration methods. Use
the command ./full_quad.py to run this file. Upon running the file, the user will be prompted to
select a model from the Genz functions listed.

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

The six functions listed correspond to the Genz functions defined above. After the user selects the
desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. As full quadrature
integration is being implemented, this script should not be used for functions of high dimension. If you
wish to integrate a function of high dimension, instead use sparse_quad.py.

After the user enters the desired dimension, she/he will be prompted to enter the desired maximum
number of quadrature points per dimension.

Enter the desired maximum number of quadrature points per dimension:

Again, this number should be entered as an integer without any decimal points. Several quadrature
integrations will be performed, with the first beginning with 1 quadrature point per dimension. For
subsequent quadrature integrations, the number of quadrature points will be incremented by one until
the maximum number of quadrature points per dimension, as specified by the user, is reached. For
example, if the user has requested a maximum of 4 quadrature points per dimension, 4 quadrature
integrations will be performed: one with 1 quadrature point per dimension, another with 2 quadrature
points per dimension, a third with 3 quadrature points per dimension, and a fourth with 4 quadrature
points per dimension.

Next, the script will call the function generate_qw from the quad_tools.py script to generate
quadrature points as well as the corresponding weights.

90

Then, the exact integral for the chosen function is computed by calling the integ_exact function in
quad_tools.py. This function calculates the exact integral according to the formulas found in the
above Theory section. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. To account for the random
nature of the Monte Carlo sampling approach, ten Monte Carlo integrations are performed and their
errors from the exact integral are averaged. To perform these Monte Carlo integrations and calculate the
error in these approximations, the function find_error found in quad_tools.py is called.
Although we are integrating over [0, 1]d, the sampling points will be uniformly random points in
[−1, 1]d. We do this so the same function func can be used to evaluate the model at these points and
the quadrature points, which are generated in [−1, 1]d. The function func takes points in [−1, 1]d as
input and maps these points to points in [0, 1]d before the function is evaluated at these new points

Finally, the data from both the quadrature and Monte Carlo integrations are plotted. A log-log graph is
created that displays the total number of sampling points versus the absolute error in the integral
approximation. The graph will be displayed and will be saved as quad_vs_mc.pdf as well.

sparse_quad.py

This script is similar to the full_quad.py file and will produce a graph comparing sparse quadrature
and Monte Carlo integration methods. Sparse quadrature integration rules should be utilized for
functions of high dimension, as they do not obey full tensor product rules. Use the command
./sparse_quad.py to run this script. Upon running the file, the user will be prompted to select a
model from the Genz functions listed.

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

After the user selects the desired model, he/she will be prompted to enter the desired dimension.

Please enter desired dimension:

The dimension should be entered as an integer without any decimal points. After the user enters the
desired dimension, she/he will be prompted to enter the maximum desired level.

Enter the maximum desired level:

91

Again, this number should be entered as an integer without any decimal points. Multiple quadrature
integrations will be performed, with the first beginning at level 1. For subsequent quadrature
integrations, the level will increase by one until the maximum desired level, as specified by the user, is
reached.

Next, the script will call the function generate_qw from the quad_tools.py script to generate
quadrature points as well as the corresponding weights.

Then, the exact integral for the chosen function is computed by calling the integ_exact function in
quad_tools.py. The error between the exact integral and the quadrature approximation is then
calculated and stored in a list of errors.

Now, for each quadrature integration performed, a Monte Carlo integration is also performed with the
same number of sampling points as the total number of quadrature points. This is done in the same
manner as in the full_quad.py script.

Lastly, the data from both the sparse quadrature and Monte Carlo integration are plotted. A log-log
graph is created that displays the total number of sampling points versus the absolute error in the
integral approximation. The graph will be displayed and will be saved as sparse_quad.pdf.

quad_tools.py

This script contains four functions called by the full_quad.py and sparse_quad.py files.

• generate_qw(ndim,param,sp=’full’,type=’LU’): This function generates quadrature
points and corresponding weights. The quadrature points will be generated in the d-dimensional
[−1, 1]d.

– ndim: The number of dimensions as specified by the user.

– param: Equal to the number of quadrature points per dimension when full quadrature
integration is being performed. When sparse quadrature integration is being performed,
param represents the level.

– sp: The sparsity, which can be set to either full or sparse. The default is set as sp=’full’,
and to change to sparse quadrature one can pass sp=’sparse’ as a parameter to the
function.

– type: The quadrature type. The default rule is Legendre-Uniform (’LU’). To change the
quadrature type, one can pass a different type to the function. For example, to change to a
Gauss-Hermite quadrature rule, pass type=’HG’ to the function. For a complete list of
the available quadrature types see the generate_quad subsection in the Applications
section of Chapter 3 of the manual.

• func(xdata,model,func_params): This function evaluates the Genz functions at the
selected sampling points.

92

– xdata: These will either be the quadrature points generated by generate_qw or the
uniform random points generated in the find_error function. The points specified as
xdata into this function will be in [−1, 1]d and thus will first be mapped to points in [0, 1]d

before the function can be evaluated at these new points.

– model: The Genz function specified by the user.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to 0.1.

• integ_exact(model,func_params): This function computes the exact integral∫
[0,1]d

f(λ)dλ of the selected Genz function, f(λ).

– model: The Genz function selected by the user.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to 0.1.

• find_error: This function performs 10 Monte Carlo integrations, and returns their average
error from the exact integral. The function takes inputs: pts, ndim, model, integ_ex, and
func_params.

– pts: The number of uniform random points that will be generated. Equal to the total
number of quadrature points used.

– ndim: The number of dimensions as specified by the user.

– model: The Genz function selected by the user.

– integ_ex: The exact integral
∫

[0,1]d
f(λ)dλ of the selected Genz function returned by the

integ_exact function.

– func_params: The parameters,wi and ui, of the Genz function selected. In the
full_quad.py file, all Genz parameters are set to 1. In the sparse_quad.py file, all Genz
parameters are set to 1 for all models except genz_cpeak. For the genz_cpeak model, the
Genz parameters are set to 0.1.

93

Sample Results

Try running the full_quad.py file with the following input:

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

genz_exp
Please enter desired dimension: 5
Enter the desired maximum number of quadrature points per dimension: 10

Your graph should look similar to the one in the figure below. Although the Monte Carlo integration
curve may vary due to the random nature of the sampling, your quadrature curve should be identical to
the one pictured.

100 101 102 103 104 105

Total number of Sampling Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Full Quadrature

Monte Carlo

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Exponential Model with Dimension 5

Figure 5-9. Sample results of full_quad.py

94

Now try running the sparse_quad.py file with the following input:

Please enter desired model from choices:
genz_osc
genz_exp
genz_cont
genz_gaus
genz_cpeak
genz_ppeak

genz_cont
Please enter desired dimension: 14
Enter the maximum desired level: 4

While the quadrature integrations are being performed, the current level will be printed to your screen.
Your graph should look similar to the figure below. Again, the Monte Carlo curve may differ but the
quadrature curve should be the same as the one pictured.

101 102 103 104 105

Total Number of Sampling points

10-7

10-6

10-5

10-4

10-3

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Sparse Quadrature

Monte Carlo

Comparison of Sparse Quadrature and Monte Carlo Integration
for Genz Continuous Model with Dimension 14

Figure 5-10. Samples results of sparse_quad.py

Next, try running full_quad.py with a quadrature rule other than the default Legendre-Uniform.

95

Locate the line in full_quad.py that calls the function generate_quad. It should read:

xpts,wghts=generate_qw(ndim,quad_param)

Now, change this line to read:

xpts,wghts=generate_qw(ndim,quad_param, type= ’CC’)

This will change the quadrature rule to Clenshaw-Curtis. Then run the file with input:
genz_gaus, 5, 10. Sample results can be found in the figure below.

100 101 102 103 104 105

Total number of Sampling Points

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

A
b
so

lu
te

 E
rr

o
r

in
 I
n
te

g
ra

l
A

p
p
ro

x
im

a
ti

o
n

Full Quadrature

Monte Carlo

Comparison of Full Quadrature and Monte Carlo Integration
for Genz Gaussian Model with Dimension 5

Figure 5-11. Sample results of full_quad.py with Clenshaw-Curtis quadrature rule.

96

5.5. FORWARD PROPAGATION OF UNCERTAINTY
WITH PYUQTK

Overview

This example is located in examples/heat_transfer_window/. It contains a Jupyter notebook and
a file of Python methods used in the notebook. The notebook demonstrates the propagation of
uncertainty in input parameters through three heat transfer models using both a Monte Carlo sampling
approach and non-intrusive spectral projection (NISP) via quadrature methods.

In this example, the forward propagation requires the representation of heat flux Q with a
multidimensional Polynomial Chaos Expansion (PCE). The theory for this can be found in section
3.1.

Implementation

The script set consists of two files:

• heat_transfer_window.ipynb: Jupyter notebook that produces a graph comparing PDFs of
heat flux generated using NISP full and sparse quadrature methods and Monte Carlo sampling
methods for three window models

• window_tools.py: problem-specific functions called by heat_transfer_window.ipynb

5.6. SURROGATE CONSTRUCTION FOR GENZ
FUNCTIONS WITH PYUQTK

Overview

This example is located in examples/surrogate_genz/. It contains four Jupyter notebooks that
construct PC surrogates for Genz functions using Galerkin projection, regression, or Bayesian
compressive sensing. The normalized root mean square error between the surrogate and the actual
function is also calculated.

For more information on PC representations, see section 3.1.

97

Implementation

The four Jupyter notebooks are

• surrogate_genz-Galerkin.ipynb: surrogate construction via Galerkin projection

• surrogate_genz-Regression.ipynb: surrogate construction via regression

• surrogate_genz-BCS.ipynb: surrogate construction via Bayesian compressive sensing

• surrogate_genz.ipynb: surrogate construction (via Galerkin projection, regression, and
Bayesian compressive sensing) and error comparison

Additionally, the file surrogate_genz-BCS_detailed.ipynb gives more detailed examples of the
BCS functionality that is available through the Python interface.

5.7. SPARSE BASIS SELECTION WITH PYUQTK

Overview

This example is located in examples/bare_bcs/. It contains a Jupyter notebook that compares sparse
basis selection with the PyUQTk Bayesian Compressed Sensing (BCS) approach to the scikit-learn
Orthogonal Matching Pursuit (OMP). Note that this example does not build a Polynomial Chaos
Expansion to represent the function. By using the bare BCS call, it can work with arbitrary sets of basis
functions.

Implementation

The Jupyter notebook is bare_bcs.ipynb

5.8. FORWARD PROPAGATION OF UNCERTAINTY
USING BASIS ADAPTATION

Overview

This example is located in examples/d_spring_series. It contains several Python scripts that
propagate uncertainty in input parameters through a series springs model using basis adaptation
approach, and is compared with Monte Carlo sampling method and non-intrusive spectral projection
(NISP) via sparse quadrature method.

98

Theory

Effective Modulus for d Springs in Series

In this example, the effective modulus for d springs in series is represented as:

f(x1, x2, ..., xd) =
d

1 + b

∏d
i=1(1 + axi + bx2i)∑d

i=1

∏d
j=1
j ̸=i

(1 + axj + bx2j)
(5.5)

each spring has modulus (1 + axi + bx2). Where d is the dimension, a and b are coefficients. In our
example, we have springs with {xi, i = 1, ..., 7} independent Gaussian distribution, where
xi ∼ N (5.0, 0.6) with i = 1, ..., 4 and xi ∼ N (4.0, 0.5) with i = 5, ..., 7. Associated coefficients are
a = 0.5 and b = 1.0.

Basis Adaptation

By emphasizing the mathematical structure on Gaussian Hilbert spaces, a reduced order is obtained,
which capture the Gaussian probabilistic information of QoI and maintains its dependence on the
original parameter space.

Let A be an isometry onRd and η be:

η = Aξ, AAT = I (5.6)

• ξ = (ξ1, ..., ξd): Gaussian random variable know as the germ

Since η is another basis just like ξ, the orthogonal basis in η span the orthogonal basis in ξ. Letting
ΨA

k (η) = Ψk(ξ), and we have the equivalent PCEs:

Q(ξ) =
P∑

k=0

QkΨk(ξ), QA(η) =
P∑
l=0

QlΨ
A
l (η), (5.7)

LettingQ(ξ) ≜ QA(η), yields:

Ql =
P∑

k=0

Qk⟨Ψk(ξ)Ψ
A
l (η)⟩ (5.8a)

Qk =
P∑
l=0

Ql⟨ΨA
l (η)Ψk(ξ)⟩ (5.8b)

This provides us with a tool to compare coefficients of two PCEs of full dimension.

After the projection of A, suppose that important probabilistic information of QoI is concentrated to
the first several components of η, then we can use these components to form a lower dimensional PCE.
One of the options would be letting A be such that:

η1 =
d∑

i=1

Qeiξi (5.9)

99

• ei: subset of multi-indices with 1 at ith location and zeros elsewhere

• Qei : first order expansion coefficients of d dimension

so that first component of η captures the complete Gaussian components ofQ. Letting the first row of
Ã be the Gaussian components, the remaining parts of Ã can be constructed in two approaches. The
first one is putting 1 in the diagonal zeros elsewhere, the second one is put the largest Gaussian
component in the second row with column position the same as it appears in the first row, and put the
second largest in the third row with column position the same as it appears in the first row too, so on so
forth. We call the second approach “sort by importance" method. Then A is constructed by the
Gram-Schmidt (or other orthogonalization) of matrix Ã.

We first perform the 1 dimensional reduction and obtain associated PC coefficients. Then the 2
dimensional reduction and compare the coefficients with the 1 dimensional PC coefficients, stop if
converged or proceed to 3 dimensional reduction if not, so on so forth. To compare coefficients of
different dimensional PCEs, say di dimensional and dj dimensional with di < dj , we need first project
coefficient from Cα (α ∈ Idi,p) to Cβ (β ∈ Idj ,p), where Id,p denote the set of all d-dimensional
multi-indices of degree less than or equal to p. This is easily done by letting:

Cα̃ =

{
Cα α̃(1, ..., di) = α and α̃(di + 1, ..., dj) = 0

0 otherwise
(5.10)

• α̃: multi-indices ∈ Idj ,p

• Cα̃: projected coefficients of Cα

This provides a convergence criterion.

We can also compare any dimensional PCE in η space (rotated space) with PCE in ξ space. Which is
done by first projecting coefficients of, say d0 dimensional, PCE in η space to coefficients of d
dimensional PCE in η space by equation 5.10, and then projecting coefficients in η space to ξ space by
equation 5.8. Then we can judge the accuracy of reduced PCE with respect to full dimensional PCE by
comparing the coefficients, in ξ space.

Implementation

The script set contains three files:

• run_d_springs.py: the main script

• d_springs_tools.py: function called by run_d_springs.py, mainly contains classical PCE
needed modules and forward model

• adaptation_tools.py: function called by run_d_springs.py, contains modules that deal
with the basis adaptation. This function is a library files located at “${install} /PyUQTk /PyPCE"

100

exec_d_springs.py

This scripts will produce two figures, the first figure compare the projected coefficients of 2 dimensional
PCE and full dimensional PCE in ξ space, the second figure compares PDFs of effective modulus of the
7 dimensional series springs model generated by 2d Gaussian adaptation method, Monte Carlo
sampling method and NISP full dimension sparse quadrature method.

Some of the important input parameters are:

• nord: The order of PCE

• ndim: The dimension of PCE, set to 7 in our example

• pc_type: Polynomial type and weighting function. Hermite-Gauss, “HG", is selected in
adaptation method

• param: Quadrature level, usually set to nord+1 to have the right polynomial exactness

• method: Method used to generate A matrix. The default one,method = 0, is using
Gram-Schmidt of Ã,method = 1 is using orthogonal decomposition of ÃÃT ,method = 2 is
using orthogonal decomposition of the Householder matrix, and the last one,method = 3, is
using “sort by importance" method. The default method ismethod = 0, which is satisfying for
most problems, if not, then we recommend to usemethod = 3

• a: a = 0.5 in our example

• b: b = 1.0 in our example

There are also other fixed parameters. One is nord0, which is equal to 1, denoting the PC order used to
compute first order coefficients, while the quadrature level parameter param0 is equal to 1 too.

The first step of the work flow for adaptation PCE is to compute the Gaussian coefficients (first order
coefficients) of the associated QoI. Then, Gaussian coefficients are used to construct rotation matrix A.
Starting from 1 dimension, the reduced PCEs are then obtained until coefficients of two successive
dimensional PCEs are converged.

Printing and Graphing
The statements indicating the total number of sampling points used for each forward propagation
method will be printed. The number of Monte Carlo points and number of points produced by sparse
quadrature points are fixed, but the number of total quadrature points produced in the adaptation
method depends on when the convergence is reached.

Monte Carlo sampling used 100000 points
Sparse quadrature method used 6245 points
Adaptation method used 244 points

101

Note that the points used in the adaptation method include points in calculating Gaussian coefficients,
1d adaptation of PCE, and 2d adaptation of PCE (used to ensure the convergence of 1d adaptation). So
actually, only 1d adaptation is enough to get a good result.

Then two graphs are generated. The first figure is a verification of 2d Gaussian adaptation with full
dimension PCE by comparing the coefficients, coefficients of 2d Gaussian adaptation are projected to
full dimensional PCE space. The second figure gives the PDFs of effective modulus generated by
different methods.

d_springs_tools.py

This script contains several functions called by run_d_springs.py file.

• fwd_model(xx, a, b): This function compute the effective modulus of the d series springs,
and the output is a NumPy array with dimension the size of samples.

– xx: Nsamples × dNumPy array, whereNsamples is the size of samples

– a, b: Input parameters in the d series springs model.

• KDE(fcn_evals)∗

• EvaluatePCE(pc_model,pc_coeffs,germ_samples): This function evaluate QoI using
the PCE model and coefficients at customized samples.

– pc_model: Known PCE model

– pc_coefficients: Feed in PC coefficients

– germ_samples: Germ samples used to evaluate

*Please see previous examples.

adaptation_tools.py

This script contains functions related to Gaussian adaptation method.

• gauss_adaptation(c_k, ndim, method = 0): Function to obtain rotation matrix A
from first order PC coefficients.

– c_k: First order PC coefficients with size equal the dimension of the problem

– ndim: Same as before, the dimension of the problem

– method: Methods used to construct matrix A, defaultmethod = 0 refers to
Gram-Schmidt procedure on matrix Ã with Gaussian coeffs (normalized) at its first row,
and ones along diagonal zeros elsewhere for other rows. Andmethod = 1 refers to
orthogonal decomposition of ÃÃT ,method = 2 refers to orthogonal decomposition of
Householder matrix H = I − 2ÃÃT

∥Ã∥2 , andmethod = 3 refers to “sort by importance"
method.

102

• eta_to_xi_mapping(eta, A, zeta = None): This function maps lower dimensional η
space to full dimensional ξ space.

– eta: η array with sizeNsamples × d

– A: Rotation matrix

– zeta: Provides an option to specify augment matrix of η to match the size of ξ. Augment
matrix is 0 if not specified

•
mi_terms_loc(d1, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0):
Find multi-indices “locations" of d1 dimensional PCE in d2 dimensional PCE. Where the
“locations" refers to locations of multi-indices in d2 dimensional PCE, where the first d1 terms of
which equal to multi-indices of d1 dimensional PCE and the remaining terms equal to 0, as
described in equation 5.10. This function is called by l2_error_eta(.) function in file
adaptation_tools.py.

– d1, d2: Dimensions of PCEs with d1 < d2

– nord, pc_type, param, sf : Parameters of the polynomial basis and quadrature method,
where nord refers to order, pc_type refers to polynomial type, param refers to quadrature
level, and sf refers to choice of “sparse" or “full" quadrature

– pc_alpha, pc_beta*

•
l2_error_eta(c_1, c_2, d1, d2, nord, pc_type, param, sf, pc_alpha=0.0, pc_beta=1.0):
Function to compute the l2 error of coefficients of d1 dimensional PCE and d2 dimensional
PCE, where coefficients of d1 dimensional PCE are projected to d1 dimensional PCE. The
projected coefficients of d1 dimensional PCE are also returned.

– c_1, c_2: Coefficients of two different dimensional PCEs

– d1, d2: Dimensions of PCEs

– nord: Order of PCEs

– pc_type, param, sf, pc_alpha, pc_beta *

•
transf_coeffs_xi(coeffs, nord, ndim, eta_dim, pc_type, param, R, sf="sparse", pc_alpha=0.0, pc_beta=1.0):
Transfer coefficients from η space to ξ space. Only make sense when etadim = ndim.

– coeffs: Coefficients in η space

– eta_dim: Dimension of η

– R: Rotation matrix

– nord, ndim, pc_type, param, sf, pc_alpha, pc_beta *

*Same as mentioned before in this example.

103

Sample Results

Run the file run_d_springs.py with the default settings. One should obtain the two figures as
below:

0 20 40 60 80 100 120
PCE terms

10 4

10 3

10 2

10 1

100

101

Co
ef

fic
ie

nt
s o

f P
CE

 te
rm

s

full dimension PCEs
2 dimension adapt PCEs

Figure 5-12. Coefficients comparison of adaptation method and full dimension PCE

Note that y axis of Figure 5-12 is plot in log scale, so the dominant coefficients of these two are very close.
The PDF showed in Figure 5-13 proves that the basis adaptation method can achieve high accuracy.

Here we use 2 dimension adaptation to make a comparison, but 1 dimension adaptation is already very
accurate (PC coefficients of which are converged to the 2 dimension values).

104

6 7 8 9 10 11 12 13 14
Effective modulus

0.0

0.1

0.2

0.3

0.4

0.5

PD
F

of
 e

ffe
ct

iv
e

m
od

ul
us

Monte Carlo Sampling
NISP sparse quadrature method
NISP 2d linear adaptive method

Figure 5-13. PDFs of effective modulus generated with different methods

5.9. BAYESIAN INFERENCE OF A LINE

Overview

This example is located in examples/line_infer It infers the slope and intercept of a line from noisy
data using Bayes’ rule. The C++ libraries are called directly from the driver program. By changing the
likelihood function and the input data, this program can be tailored to other inference problems.

To run an example, type ./line_infer.py directly. This file contains quite a bit of inline
documentation about the various settings and methods used. To get a listing of all command line
options, type ./line_infer.py -h". A typical run, with parameters changed from command-line,
is as follows:

./line_infer.py --nd 5 --stats

This will run the inference problem with 5 data points, generate plots of the posterior distributions, and
generate statistics of the MCMC samples. If no plots are desired, also give the --noplots argument.

105

More details

After setting a number of default values for the example problem overall, the line_infer.py script
sets the proper inference inputs in the file line_infer.xml, starting from a set of defaults in
line_infer.xml.templ. The file line_infer.xml is read in by the C++ code line_infer.x,
which does the actual Bayesian inference. After that, synthetic data is generated, either from a linear, or
cosine model, with added noise.

Then, the script calls the C++ line inference code line_infer.x to infer the two parameters (slope
and intercept) of a line that best fits the artificial data. (Note, one can also run the inference code
directly by manually editing the file line_infer.xml and typing the command ./line_infer.x)

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag --noplots is specified, the script computes and plots the following:

• The pushed-forward and posterior predictive error bars

– Generate a dense grid of x-values

– Evaluate the linear model y = a+ bx for all posterior samples (a, b) after the burn-in

– Pushed-forward distribution: compute the sample mean and standard deviation of using
the sampled models

– Posterior predictive distribution: combine pushed-forward distribution with the noise
model

• The MCMC chain for each variable, as well as a scatter plot for each pair of variables

• The marginal posterior distribution for each variable, as well as the marginal joint distribution
for each pair of variables

If the flag --stats is specified, the following statistics are also computed:

• The mean, MAP (Maximum A Posteriori), and standard deviations of all parameters

• The covariance matrix

• The average acceptance probability of the chain

• The effective sample sizes for each variable in the chain

Sample Results

106

1.0 0.5 0.0 0.5 1.0
x

3.5

4.0

4.5

5.0

5.5

6.0

6.5

y

Mean prediction

Data

Figure 5-14. The pushed forward posterior distribution (dark grey) and posterior
predictive distribution (light grey).

0 50000 100000 150000 200000
MCMC step

4.8

4.9

5.0

5.1

5.2

a

0 50000 100000 150000 200000
MCMC step

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

b

4.8 4.9 5.0 5.1 5.2
a

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

b

Figure 5-15. MCMC chains for parameters a and b, as well as a scatter plot for a and
b

107

4.8 5.0 5.2

a

1.4 1.2 1.0 0.8

b

4.8 5.0 5.2

1.4

1.2

1.0

0.8

Figure 5-16. Marginal posterior distributions for all variables, as well as marginal
joint posteriors

5.10. SAMPLING OF MULTIMODAL POSTERIOR PDFS
USING TMCMC

Overview

This example is located in examples/tmcmc_bimodal. It generates samples distributed according to
an underlying 3-dimensional bimodal posterior PDF, being a product of a Normal prior PDF and a
bimodal likelihood PDF. It utilizes the Transitional Markov chain Monte Carlo (TMCMC)
method [7], a variant of a class of MCMC algorithms known as tempering methods, which also
provides an estimate of the model evidence at no extra computational cost (i.e. no further evaluations of
likelihood and/or prior PDFS). The C++ libraries are called directly from the driver program. By
changing the likelihood function and prior PDF (in bimodal.cpp), along with providing consistent
samples from the prior PDF in tmcmc_prior_samples.dat, this program can be tailored to other
problems. It utilizes shell scripts to spawn multiple processes for parallel evaluation of likelihood and
prior PDFs.

To run an example, type ./tmcmc_bimodal.py directly. To get a listing of all command line options,
type ./tmcmc_bimodal.py -h. A typical run is as follows:

./tmcmc_bimodal.py

108

This will run the TMCMC sampler, starting with 5000 samples from the prior PDF, generate plots of
the posterior distributions along with intermediate samples (artifacts of TMCMC). If no plots are
desired, also give the --noplots argument.

More details

TMCMC combines aspects of simulated annealing optimization with Markov chain Monte Carlo,
creating an algorithm that has strong capacity for parallelism, and provides an estimate of model
evidence, a component of Bayesian model selection. It starts with samples from the prior distribution
Pr(θ), and utilizes importance sampling (with a resampling step) to provide samples from intermediate
PDFs given by Pr(D|θ)β Pr(θ) while introducing diversity through MCMC steps. Pr(D|θ) is the
likelihood function and β is the temperature parameter that monotonically increases from 0 to 1, with
step sizes chosen adaptively (i.e. varying from one step to the next) such that the coefficient of variation
of the importance sampling weights does not exceed a threshold (see [62] for a relevant discussion).

In general, the performance of TMCMC as implemented in UQTk heavily depends on the maximum
allowable coefficient of variation of the sample weights. This can be controlled using the MCMC class
member function initTMCMCCv. Based on numerical experiments, the UQTk default value of 0.1
should be adjusted down whenever the apparent bias in the resulting posterior samples is insufficiently
high (i.e. when the generated ensemble does not adhere to the structure inherent in the posterior PDF).
This situation seems to arise whenever the discrepancy between the prior and posterior PDFs is high (as
dictated by the likelihood). However, the need to adjust the coefficient of variation is reduced with (a)
greater number of TMCMC samples, and/or (b) longer MCMC chains (to encourage mixing as
controlled via the initTMCMCMFactor member function).

This example involves a driver python script, tmcmc_bimodal.py, that invokes the program (based on
provided C++ code) tmcmc_bimodal.x. This program sets up the MCMC class object, specifying the
dimensionality of the problem, number of samples required, and number of processes for parallel
evaluation of likelihood and prior, along with other algorithmic choices. The TMCMC algorithm
proceeds with loading the user-provided prior PDF samples from tmcmc_prior_samples.dat, and
iterating through the cooling steps. In each step, two shell scripts are invoked to spawn multiple
processes for parallel evaluation of likelihood and prior PDFs, namely tmcmc_getLL.sh and
tmcmc_getLP.sh, respectively. In turn, each process involves running bimodal.x (with
corresponding C++ source bimodal.cpp) which evaluates the prior and/or likelihood for an ensemble
of samples at one particular TMCMC step.

The script then reads in the MCMC posterior samples file, and performs some postprocessing. Unless
the flag --noplots is specified, the script computes and plots the following:

• 2-dimensional scatter plots of posterior samples

• 2-dimensional scatter plots of intermediate TMCMC samples (for intermediate β values)

• The marginal posterior distribution for each variable, as well as the marginal joint distribution
for each pair of variables

109

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

-0.5 0 0.5

-0.5

0

0.5

Figure 5-17. 2-dimensional scatter plots of posterior samples

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

-2 0 2

-3

-2

-1

0

1

2

3

Figure 5-18. 2-dimensional scatter plots of intermediate TMCMC samples, from prior
to posterior

Sample Results

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5

-0.5

0

0.5

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

PD
F

-0.5 0 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Figure 5-19. Marginal posterior distributions for all variables, as well as marginal
joint posteriors

110

5.11. SAMPLING USING UM-BRIDGE

• Located in examples/tmcmc_umbridge

• Basic example on how to use UM-Bridge supporting models from UQTk, based on
tmcmc_bimodal

This example has been contributed by Linus Seelinger in the Spring of 2023. The UM-Bridge package
allows one to run UQTk on one machine, and have the samples for UQTk evaluated on another
machine. For more details, see the README file in the installation folder as well as the UM-Bridge
package documentation at https://um-bridge-benchmarks.readthedocs.io

5.12. FORWARD PROPAGATION OF UNCERTAINTIES,
SURROGATE CONSTRUCTION AND GLOBAL
SENSITIVITY ANALYSIS

Overview

• Located in examples/uqpc

• A collection of scripts that propagate input parameter uncertainties to output via PC expansions.
As a special, and most commonly used, case the scripts can construct a PC surrogate for a
multi-output computational model. The latter is as a black box simulation code. The workflow
also provides tools for global sensitivity analysis of the outputs of this black box model with
respect to its input parameters or input PC germs.

Theory

Consider a function f(λ;x) where λ = (λ1, . . . , λd) are the model input parameters of interest, while
x ∈ Rm are design parameters with controllable values. For example, x can denote a spatial coordinate
or a time snapshot, or it can simply enumerate multiple quantities of interest. Furthermore, assume the
input parameters are given by a (generally, joint) Polynomial Chaos expansions as

λi =

Kin−1∑
k=0

aikΨk(ξ), for i = 1, . . . , d, (5.11)

where Ψk(ξ) = Ψk(ξ1, . . . , ξd̃) are standard multivariate polynomials, defined as products of
univariate polynomials ψki(ξi) as follows:

Ψk(ξ) = ψk1(ξ1) . . . ψkd(ξd̃). (5.12)

111

https://um-bridge-benchmarks.readthedocs.io

Note that the stochastic input ξ = (ξ1, . . . , ξd̃) does not need to have the same dimensionality as the
parameter vector λ = (λ1, . . . , λd), i.e. d ̸= d̃ in general. However, most commonly, it is. For example,
if parameters are given by their ranges only,

λi ∈ [ai, bi] for i = 1,d, (5.13)

one can think of it as first-order Legendre-Uniform PC by the linear transformation

λi =
bi + ai

2
+
bi − ai

2
ξi, for i = 1, . . . , d. (5.14)

The goal is to build a PC representation for each value of design parameter x, i.e. for l = 1, . . . , L,

f(λ;xl) ≈ gc(λ;xl) =
K−1∑
k=0

cklΨk(ξ). (5.15)

Note that if inputs are given independently on their respective ranges, λ ∈ [ai, bi], the PC expansion
(5.15) is simply a polynomial surrogate with respect to scaled inputs

ξi =
λi − bi+ai

2
bi−ai

2

∈ [−1, 1] for i = 1,d. (5.16)

A typical truncation rule in (5.15) is defined according to the total order of the basis terms, i.e. only
polynomials with the total order ≤ p are retained for some positive integer order p, implying
|k1|+ · · ·+ |kd| ≤ p, andK = (d+ p)!/(d!p!). The scalar index k is simply counting the
multi-indices (k1, . . . , kd).

The three generic methods of finding the PC coefficients ckl are detailed below.

Projection: The basis orthogonality enables the projection formulae

ckl =

∫
Ω

f(λ(ξ);xl)Ψk(ξ)π(ξ)dξ (5.17)

where λ(ξ) simply denotes the PC form (5.13) or the linear scaling relation in (5.14), and π(ξ) is the PDF
of ξ. Note that π(ξ) = 2−d for the linear, Legendre-Uniform PC case.

The projection integral is taken by quadrature integration

ckl ≈
N∑
q=1

wqf(λ(ξ
(q));xl)Ψk(ξ

(q)), (5.18)

where ξ(q) are Gaussian quadrature points, andwq are the associated weights. See the description of the
app pce_resp as well.

112

Bayesian Least-Squares Regression: In cases when model outputs are noisy, or highly
non-linear, or when one can not afford model evaluations at a predefined quadrature locations, it is
convenient to reformulate the coefficient finding as a regression problem. More specifically, consider the
least-squares problem that attempts to solve, for each design condition l = 1, . . . , L,

argmin
c

N∑
s=1

(
f(λ(ξ(s));xl)−

K−1∑
k=0

cklΨk(ξ
(s))

)2

. (5.19)

Due to linearity of the polynomial form with respect to coefficients ckl, the exact solution of this
minimization problem is available via matrix manipulations, see, e.g. [46]. In the description of the app
regression, the Bayesian generalization of this least-squares fit is described.

Bayesian Compressive Sensing (BCS): For high-dimensional problems, i.e. when d is
sufficiently large, the number of termsK for a reasonable truncation order in the output PC (5.15) is
large. In such cases, one typically has fewer model evaluations available than the number of basis terms,
i.e. the problem is underdetermined. In such situations, one can employ ℓ1 regularization techniques,
building on the compressive sensing work from image processing community. Here, we have
implemented the Bayesian reformulation of such an algorithm, with approximate and fast procedure of
pruning the unnecessary terms in the PC expansion. See [1, 49] for more details on BCS.

After computing the PC coefficients ckl, one can extract the global sensitivity information, also called
Sobol indices or variance-based decomposition. For example, the main sensitivity index with respect to
the dimension i (or variable ξi) is

Si(xl) =

∑
k∈Ii c

2
kl||Ψk||2∑K−1

k=1 c
2
kl||Ψk||2

, (5.20)

where Ii is the indices of basis terms that involve only the variable ξi, i.e. the one-dimensional
monomials ψ1(ξi), ψ2(ξi), In other words, these are basis terms corresponding to multi-indices with
the only non-zero entry at the i-th location. For further details regarding global sensitivity analysis
(GSA), see the theory side of the description of the “GSA via Sampling” workflow, and the description
of the app pce_sens in Section 4.2.11.

Implementation

The script set consists of the following files:

• uq_pc.py : the main script, see Table 5-1. Also one can run uq_pc.py -h for help in the
terminal.

• model.py : black-box example model. See Figure 5-20 for visual explanation of the expected
input-output structure. Try model.py -h for help in the terminal. The syntax of this script is

model.py -i <input_file> -o <output_file> -m <model_name>

The list of arguments:

113

-i <input_file> : N × d file that stores the input parameter ensemble ofN samples of
d-dimensional input.

-o <output_file> : N × L file where output f(λ(i), xl) is stored, withN rows
(number of input parameter samples) and L columns (number of outputs, or number of
design parameter values).

-m <model_name> : Name of the model. Options are example (default) and genz.

* example : an example function f(λ;x) =
(∑d

i=1 λi

)(∑d
i=1

λi+λ2
i

ix

)
is

implemented that also produces the file designPar.dat for design parameters
xj = j for j = 1, . . . , L, with L = 7. The function has d inputs and L = 7 outputs.

* genz : this function has two outputs (L = 2): Gaussian and Osccillatory Genz
functions.

User can create a black-box model.py with similar I/O structure, or augment model.py with
their own function.

• plot_prep.py : plotting before surrogate construction. The syntax of the script is
plot_prep.py <plot_type> <...>.
Try plot_prep.py -h or plot_prep.py <plot_type> -h, where plot_type is

pcoord : Plots the inputs in parallel coordinates.

xx : Plots one input parameter versus another.

xy : Plots one of the outputs versus one of the inputs.

xxy : Surface-plot of one of the outputs versus two inputs.

• plot.py : plotting after surrogate construction, reading the pickle file results.pk
produced by uq_pc.py. The syntax of the script is plot.py <plot_type> <...>.
Try plot.py -h or plot.py <plot_type> -h, where plot_type is

sens : Plots the sensitivity information in a bar-plot. This command also produces
allsens_main.dat or allsens_total.dat, the sensitivity indices in a format r × d,
where each row corresponds to a single value for the design parameter, and each column
corresponds to the sensitivity index of a parameter.

senscirc : Plots sensitivity circular plots for all outputs, and averaged as well.

sensmat : Plots sensitivity matrix for all outputs and for the most important inputs.

dm : Plots model-vs-data for all values of the design parameter (i.e. for all outputs).

idm : Plots model and data values on the same axis, for all the values of the design
parameter.

1d : Plots 1d surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

114

2d : Plots 2d surrogate (the rest of parameters, if any, at nominal) versus data, for
all outputs.

mindex : Visualizes the multiindex for all outputs.

micf : Plots the multiindex for all outputs in a different way, meaningful only for 2d
and 3d.

pdf : Plots the PDF of the output. Sampling size parameter is hardwired.

senserb1 : Computes sensitivities with errorbars. Not tested enough. Some hardwired
parameters. Requires uq_pc.py method (-m) lsq or bcs and prediction mode (-i) msc.
Relies on script model_sens.x as a black-box model-sensitivity evaluator for each fixed
sample pf PC coefficients.

senserb2 : Plots the sensitivities with errorbars. Not tested enough. Needs to be run
only after plot.py senserb1.

The user is encouraged to enhance or change the visualization scripts on their own, taking
plot.py as an example of unrolling the surrogate construction output pickle file results.pk.

Both plot_prep.py and plot.py would accept (but not require!) parameter name file
pnames.txt (d rows) and output names file outnames.txt (r rows) if one wants to have
informative plot labels.

Other auxiliary or example scripts are listed below:

• prepare_inpc.py : Prepares PC coefficient file given marginal PCs or samples.
The output, param_pcf.txt file can be used with flag -c in uq_pc.py.

• generate_inputsamples.py : Auxiliary script to generate example jointly distributed
random samples.

• join_results.py : Auxiliary script as an example of joining a set of surrogate
construction pickle files into a single pickle file results.pk.

• model_sens.x : Auxiliary script as a sensitivity evaluation black-box for given
PC coefficients.

• transpose_file.x : Transpose a given matrix file.
Syntax: transpose_file.x <file_in> > <file_out>

• scale.x : Scale given matrix file to or from a given hypercube to
[−1, 1]d. Syntax: scale.x <input> <to or from> <domain> <output>

• getrange.x : Get parameter ranges of a given set of samples. Syntax:
getrange.x <samples.dat> [cushion_fraction] > <ranges.dat>

• example_0.x : Minimal example workflow. Assumes input.dat
(N × d) and output.dat (N × L) are given.

• example_1.x : Surrogate construction example workflow.

115

• example_2.x : Uncertainty propagation example workflow.

• example_3.x : Surrogate-for-time-series (i.e. each output is a snapshot)
example workflow.

Figure 5-20. Sketch of the expected input-output structure of the black-box model.

116

Argument Options Description

-r <run_regime> The regime in which the workflow is employed.
online_example A black-box model model(...), defined in model.py, is run directly as parameter ensemble becomes avail-

able. User can provide their own model(...) with minimal surgery.
online_bb A black-box model scriptmodel.x <input_file> <output_file> is run. The intention is that the user

provides the model.x script with the appropriate I/O.
offline_prep Prepare the input parameter ensemble and store in ytrain.dat and, if validation is requested,

yval.dat. The user then should run the model (model.py ptrain.dat ytrain.dat and perhaps
model.py pval.dat yval.dat) in order to provide ensemble output for the offline_post stage.

offline_post Postprocess the output ensemble, assuming the model is run offline with input ensemble provided in the
offline_prep stage producing ytrain.dat and, if validation is requested, yval.dat. The rest of the
arguments should remain the same as in offline_prep.

-p <domain_file> A file with d rows and 2 columns, where d is the number of parameters and each row consists of the lower and
upper bound of the corresponding parameter.

-c <inpc_file> Input PC coefficient file.

-d <in_pcdim> Input PC stochastic dimension.

-x <pctype> HG,LU,LU_N,
GLG,JB,SW PC type.

-o <in_pcord> Input PC order.

-m <fit_method> The method of finding the PC surrogate coefficients.
proj Projection method outlined in (5.17) and (5.18)
lsq Bayesian least-squares.
bcs Bayesian compressive sensing.

-s <sam_method> The input parameter sampling method.
rand Uniformly random points. To be implemented.
quad Quadrature points. This sampling scheme works with the projection method only, described in (5.18)

-n <nqd> Number of samples requested if sam_method=rand, or the number of quadrature points per dimen-
sion, if sam_method=quad and sparsity=full, or the level of quadrature if sam_method=quad and
sparsity=sparse.

-v <nval> Number of uniformly random samples generated for PC surrogate validation, can be equal to 0 to skip vali-
dation.

-f <sparsity> full, sparse Sparsity, if sam_method=quad.

-t <out_pcord> Output PC order.

-i <pred_mode> m, ms, msc Prediction mode to compute the mean only (m), mean and standard deviation (ms), mean and full covariance
with respect to x (msc).

-e <tolerance> Tolerance parameter (currently for fit_method=bcs only).

-z <cleanup> Flag to cleanup after (be careful: removes *log and *dat files).

Hardwired inputs (also see Figure 5-20)
ptrain.dat N × d matrix, each row is a d-variate parameter sample
qtrain.dat the same scaled to [-1,1]
wtrain.dat quadrature weights only if sampling method is quadrature
ytrain.dat N × L vector of outputs
pval.dat V × d matrix, each row is a d-variate parameter sample
qval.dat the same scaled to [-1,1]
yval.dat V × L vector of outputs
Output file
results.pk Python pickle file containing a dictionary with all the results. The visualization plot.py serves as an example

of how to unroll it.

Table 5-1. Arguments of the main script uq_pc.py.

117

5.13. GLOBAL SENSITIVITY ANALYSIS VIA SAMPLING

Overview

• Located in PyUQTk/sens

• A collection of Python functions that generate input samples for black-box models, followed by
functions that post-process model outputs to generate total, first-order, and joint effect Sobol
indices

Theory

LetX = (X1, · · · , Xn) : Ω → X ⊂ IRn be an n−dimensional Random Variable in L2(Ω,S, P)
with probability densityX ∼ pX(x). Let x = (x1, · · · , xn) ∈ X be a sample drawn from this density,
with X = X1 ⊗X2 ⊗ · · · ⊗ Xn, and Xi ⊂ IR is the range ofXi.

LetX−i = (X1, · · · , Xi−1, Xi+1, · · · , Xn) : Ω → X−i ⊂ IRn−1, where
X−i ∼ pX−i|Xi

(x−i|xi) = pX(x)/pXi
(xi), pXi

(xi) is the marginal density ofXi,
x−i = (x1, · · · , xi−1, xi+1, · · · , xn), and X−i = X1 ⊗ · · · ⊗ Xi−1 ⊗Xi+1 ⊗ · · · ⊗ Xn.

Consider a function Y = f(X) : Ω → IR, with Y ∈ L2(Ω,S, P). Further, let Y ∼ pY (y), with
y = f(x). Given the variance of f is finite , one can employ the law of total variance1,2 to decompose
the variance of f as

V [f] = Vxi
[E[f |xi]] + Exi

[V [f |xi]] (5.21)

The conditional mean,E[f |xi] ≡ E[f(X)|Xi = xi], and conditional variance,
V [f |xi] = V [f(X)|Xi = xi], are defined as

⟨f⟩−i ≡ E[f |xi] =
∫
X−i

f(x)pX−i|Xi
(x−i|xi)dx−i (5.22)

V [f |xi] = E[(f − ⟨f⟩−i)
2|xi]

= E[(f 2 − 2f⟨f⟩−i + ⟨f⟩2−i)|xi]
= E[f 2|xi]− 2⟨f⟩−i⟨f⟩−i + ⟨f⟩2−i

=

∫
X−i

f(x)2pX−i|Xi
(x−i|xi)dx−i − ⟨f⟩2−i (5.23)

The terms in the rhs of Eq. (5.21) can be written as

Vxi
[E[f |xi]] = Exi

[(E[f |xi]− Exi
[E[f |xi]])2] (5.24)

= Exi
[(E[f |xi]− f0)

2]

= Exi
[(E[f |xi])2]− f 2

0

=

∫
Xi

E[f |xi]2pXi
(xi)dxi − f 2

0

1en.wikipedia.org/wiki/Law_of_total_variance
2en.wikipedia.org/wiki/Law_of_total_expectation

118

en.wikipedia.org/wiki/Law_of_total_variance
en.wikipedia.org/wiki/Law_of_total_expectation

where f0 = E[f] = Exi
[E[f |xi]] is the expectation of f , and

Exi
[V [f |xi]] =

∫
Xi

V [f |xi]pXi
(xi)dxi (5.25)

The ratio
Si =

Vxi
[E[f |xi]]
V [f]

(5.26)

is called the first-order Sobol index [55] and

ST
−i =

Exi
[V [f |xi]]
V [f]

(5.27)

is the total effect Sobol index for x−i. Using Eq. (5.21), the sum of the two indices defined above is

Si + ST
−i = S−i + ST

i = 1 (5.28)

Joint Sobol indices Sij are defined as

Sij =
Vxi,xj

[E[f |xi, xj]]
V [f]

− Si − Sj (5.29)

for i, j = 1, 2 . . . , n and i ̸= j.

Si can be interpreted as the fraction of the variance in model f that can be attributed to the i-th input
parameter only, while Sij is the variance fraction that is due to the joint contribution of i-th and j-th
input parameters. ST

i measures the fractional contribution to the total variance due to parameter xi and
its interactions with all other model parameters.

The Sobol indices are numerically estimated using Monte Carlo (MC) algorithms proposed by
Saltelli [43] and Kucherenko et al [32]. Let xk = (x1, · · · , xn)k be a sample ofX drawn from pX . Let
x′k−i be a sample from the conditional distribution pX−i|Xi

(x′−i|xki), and x′′ki a sample from the
conditional distribution pXi|X−i

(x′′i |xk−i).

The expectation f0 = E[f] and variance V = V [f] are estimated using the xk samples as

f0 ≈
1

N

N∑
k=1

f(xk), V ≈ 1

N

N∑
k=1

f(xk)2 − f 2
0 (5.30)

whereN is the total number of samples. The first-order Sobol indices Si are estimated as

Si ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−i ∪ xki)− f 2
0

)
(5.31)

The joint Sobol indices are estimated as

Sij ≈
1

V

(
1

N

N∑
k=1

f(xk)f(x′k−(i,j) ∪ xki,j)− f 2
0

)
− Si − Sj (5.32)

119

For ST
i , UQTk offers two alternative MC estimators. In the first approach, ST

i is estimated as

ST
i = 1− S−i ≈ 1− 1

V

(
1

N

N∑
k=1

f(xk)f(x′′ki ∪ xk−i)− f 2
0

)
(5.33)

In the second approach, ST
i is estimated as

ST
i ≈ 1

2V

(
1

N

N∑
k=1

(
f(xk)− f(xk−i ∪ x′′ki)

)2) (5.34)

Implementation

Directory pyUQTk/sensitivity contains two Python files

• gsalib.py : set of Python functions implementing the MC sampling and estimators for Sobol
indices

• gsatest.py : workflow illustrating the computation of Sobol indices for a toy problem

gsalib.py implements the following functions

• genSpl_Si(nspl,ndim,abrng,**kwargs) : generates samples for Eq. (5.31). The input
parameters are as follows

nspl: number of samplesN ,

ndim: dimensionality n of the input parameter space ,

abrng: a 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are used in
subsequent calculations of joint Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_Si(modeval,ndim,**kwargs) : computes first-order Sobol indices using Eq. (5.31).
The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

120

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_SiT(nspl,ndim,abrng,**kwargs) : generates samples for Eqs. (5.33-5.34). The
input parameters are as follows

nspl: number of samplesN ,

ndim: dimensionality n of the input parameter space ,

abrng: an 2-dimensional array n× 2, containing the range for each component xi.

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples. These samples are used in
subsequent calculations of Sobol indices

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

• genSens_SiT(modeval,ndim,**kwargs) : computes total Sobol indices using either
Eq. (5.33) or Eq. (5.34). The input parameters are as follows

modeval: name of ascii file with model evaluations,

ndim: dimensionality n of the input parameter space

The following optional parameter can also be specified

type: specifies wether to use Eq. (5.33) for type = ”type1” or Eq. (5.34) for type ̸= ”type1”

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

• genSpl_Sij(ndim,**kwargs) : generates samples for Eq. (5.32). The input parameters are as
follows

ndim: dimensionality n of the input parameter space ,

The following optional parameters can also be specified

splout: name of ascii output file for MC samples

matfile: name of binary output file for select MC samples saved by genSpl_Si.

verb: verbosity level

nd: number of significant digits for ascii output

The default values for optional parameters are listed in gsalib.py

121

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
i

(x1 ,x2) (x2 ,x3) (x3 ,x4)
0

0.02

0.04

0.06

S
ij

Figure 5-21. First-order (left frame) and joint (right frame) Sobol indices for the
model given in Eq. (5.35). The black circles show the theorerical values, computed
analytically, and the error bars correspond to ±σ computed based on an ensemble
of 10 runs.

• genSens_Sij(sobolSi,modeval,**kwargs) : computes joint Sobol indices using
Eq. (5.32). The input parameters are as follows

sobolSi: array with values for first-order Sobol indices Si

modeval: name of ascii file with model evaluations.

The following optional parameter can also be specified

verb: verbosity level

The default value for the optional parameter is listed in gsalib.py

gsatest.py provides the workflow for the estimation of Sobol indices for a simple model given by

f(x1, x2, . . . , xn) =
n∑

i=1

xi +
n−1∑
i=1

i2xixi+1 (5.35)

In the example provided in this file, n (ndim in the file) is set equal to 4, and the number of samplesN
(nspl in the file) to 104. Figures 5-21 and 5-22 show results based on an ensemble of 10 runs. To
generate these results run the example workflow:

python gsatest.py

122

x1 x2 x3 x4
0

0.1

0.2

0.3

0.4

0.5

S
T i

Exact

Est.1

Est.2

Figure 5-22. Total-order Sobol indices for the model given in Eq. (5.35). The red
bars shows results based on Eq. (5.33) while the yellow bars are based on Eq. (5.34).
The black circles show the theorerical values, computed analytically, and the error
bars correspond to ±σ computed based on an ensemble of 10 runs. For this model,
Eq. (5.34) provides more accurate estimates for ST

i compared to results based on
Eq. (5.33).

5.14. KARHUNEN-LOÈVE EXPANSION OF A
STOCHASTIC PROCESS

• Located in examples/kle_ex1

• Some examples of the construction of 1D and 2D Karhunen-Loève (KL) expansions of a
Gaussian stochastic process, based on sample realizations of this stochastic process.

Theory

Assume stochastic process F (x, ω) : D × Ω → R is L2 random field onD, with covariance function
C(x, y). Then F can be written as

F (x, ω) = ⟨F (x, ω)⟩ω +
∞∑
k=1

√
λkfk(x)ξk (5.36)

where fk(x) are eigenfunctions ofC(x, y) and λk are corresponding eigenvalues (all positive). Random
variables ξk are uncorrelated with unit variance. Projecting realizations of F onto fk leads to samples of
ξk. These samples are generally not independent. In the special case when F is a Gaussian random
process, ξk are i.i.d. normal random variables.

123

The KL expansion is optimal, i.e. of all possible orthonormal bases for L2(D × Ω) the above
{fk(x)|k = 1, 2, . . .} minimize the mean-square error in a finite linear representation of F (·). If
known, the covariance matrix can be specified analytically, e.g. the square-exponential form

C(x, y) = exp

(
−|x− y|2

c2l

)
(5.37)

where |x− y| is the distance between x and y and cl is the correlation length. The covariance matrix
can also be estimated from realizations, e.g.

C(x, y) =
1

Nω

∑
ω

(F (x, ω)− ⟨F (x, ω)⟩ω)(F (y, ω)− ⟨F (y, ω)⟩ω) (5.38)

whereNω is the number of samples, and ⟨F (x, ω)⟩ω is the mean over the random field realizations at
x.

The eigenvalues and eigenvectors in Eq. (5.36) are solutions of the Fredholm equation of second kind:∫
C(x, y)f(y)dy = λf(x) (5.39)

One can employ the Nystrom algorithm [36] to discretize of the integral in the left-hand side of
Eq. (5.39)

Np∑
i=1

wiC(x, yi)f(yi) = λf(x) (5.40)

Herewi are the weights for the quadrature rule that usesNp points yi where realizations are provided.
In a 1D configuration, one can employ the weights corresponding to the trapezoidal rule:

wi =

y2−y1

2
if i = 1,

yi+1−yi−1

2
if 2 ≤ i < Np,

yNp−yNp−1

2
if i = Np,

(5.41)

After further manipulation, Eq. (5.40) is written as

Ag = λg

whereA = WKW and g = Wf , withW being the diagonal matrixWii =
√
wi and

Kij = C(xi, yj). Since matrixA is symmetric, one can employ efficient algorithms to compute its
eigenvalues λk and eigenvectors gk. Currently UQTk relies on the dsyevx function provided by the
LAPACK library.

The KL eigenvectors are computed as fk = W−1gk and samples of random variables ξk are obtained by
projecting realizations of the random process F on the eigenmodes fk

ξk|ωl
= ⟨F (x, ωl)− ⟨F (x, ω)⟩ω , fk(x)⟩x /

√
λk

124

Numerically, these projections can be estimated via quadrature

ξk|ωl
=

Np∑
i=1

wi (F (xi, ωl)− ⟨F (xi, ω)⟩ω) fk(xi)/
√
λk (5.42)

If F is a Gaussian process, ξk are i.i.d. normal RVs, i.e. automatically have first order Wiener-Hermite
Polynomial Chaos Expansions (PCE). In general however, the KL RVs can be converted to PCEs (not
shown in the current example).

1D Examples

In this section we are presenting 1D RFs generated with kl_1D.x. The RFs are generated on a
non-uniform 1D grid, with smaller grid spacing near x = 0 and larger grid spacing towards x = 1. This
grid is computed using an algebraic expression [27]

xi = L
β + 1− (β − 1)ri

ri + 1
, ri =

(
β + 1

β − 1

)1−ηi

, ηi =
i− 1

Np − 1
, i = 1, 2, . . . , Np (5.43)

The β > 1 factor in the above expression controls the compression near x = 0. It results in higher
compression as β gets closer to 1. The examples shown in this section are based on default values for the
parameters that control the grid definition in kl_1D:

β = 1.1, L = 1, Np = 129

Figure 5-23 shows sample realizations for 1D random fields (RF) generated with a square-exponential
covariance matrix employing several correlation lenghts cl. These figures were generated with

./mkplots.py samples 0.05

./mkplots.py samples 0.10

./mkplots.py samples 0.20

(a) cl = 0.05

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

(b) cl = 0.10

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

(c) cl = 0.20

0.0 0.2 0.4 0.6 0.8 1.0
x

20

10

0

10

20

F
(x
,θ

)

Figure 5-23. Sample 1D random field realizations for several correlation lengths cl.

125

Once the RF realizations are generated the covariance matrix is discarded and a “numerical” covariance
matrix is estimated based on the available realizations. Figure 5-24 shows shaded illustration of
covariance matrices computed using several sets of 1D RF samples. These figures were generated with
./mkplots.py numcov 0.05 512 ./mkplots.py numcov 0.20 512
./mkplots.py numcov 0.05 8192 ./mkplots.py numcov 0.20 8192
./mkplots.py numcov 0.05 131072 ./mkplots.py numcov 0.20 131071

These matrices employ RF samples generated on a non-uniform grid with higher density of points near
the left boundary. Hence, the matrix entries near the diagonal in the upper right corner show larger
values. Grids grow further apart away from the left boundary hence the region near the diagonal grows
thinner for these grid points.

(a) cl = 0.05, Nω = 29 (b) cl = 0.05, Nω = 213 (c) cl = 0.05, Nω = 217

(d) cl = 0.20, Nω = 29 (e) cl = 0.20, Nω = 213 (f) cl = 0.20, Nω = 217

Figure 5-24. Illustration of covariance matrices computed from 1D RF realizations.
Red corresponds to large values, close to 1, while blue corresponds to small values,
close to 0.

Figure 5-25 shows the eigenvalue solution of Fredholm equation (5.39) in its discretized form given by
Eq. (5.40). This figure was generated with

./mkplots.py pltKLeig1D 512 131072

For this 1D example problem, 29 = 512 RF realizations are sufficient to estimate the KLE eigenvalue
spectrum. As the correlation length decreases the eigenvalues decrease more slowly suggesting that more
terms are needed to represent RF fluctuations.

Figure 5-26 shows first four KL eigenvectors corresponding to cl = 0.05, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

126

0 10 20 30 40 50

Eigenvalue #

10-6

10-4

10-2

100

102

E
ig

e
n
v
a
lu

e
 M

a
g
n
it

u
d
e cl =0.05

cl =0.10

cl =0.20

Figure 5-25. KL eigenvalues estimated with two sets of RF realizations: 29 = 512
(dashed lines) and 217 = 131072 (solid lines).

./mkplots.py numKLevec 0.05 512 on

./mkplots.py numKLevec 0.05 8192 off

./mkplots.py numKLevec 0.05 131072 off

Unlike the eigenvalue spectrum, the eigenvectors are very sensitive to the covariance matrix entries. For
cl = 0.05, a large number of RF realizations, e.g. Nω = 217 in Fig. 5-26c, are required for computing a
covariance matrix with KL modes that are close to the ones based on analytical covariance matrix
(analytical modes not shown).

(a) Nω = 29

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

f1

f2

f3

f4

(b) Nω = 213

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

(c) Nω = 217

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

Figure 5-26. Illustration of first 4 KL modes, computed based on a numerical co-
variance matrices using three sets of RF realizations with cl = 0.05

Figure 5-27 shows first four KL eigenvectors corresponding to cl = 0.20, scaled by the square rood of
the corresponding eigenvalue. These plots were generated with

./mkplots.py numKLevec 0.20 512 on

127

./mkplots.py numKLevec 0.20 8192 off

./mkplots.py numKLevec 0.20 131072 off

For larger correlation lengths, a smaller number of samples is sufficient to estimate a covariance matrix
and subsequently the KL modes. The results based onNω = 213 = 8192 RF realizations, in Fig. 5-27b,
are close to the ones based on a much larger number of realizations,Nω = 217 = 131072 in Fig. 5-27c.

(a) Nω = 29

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

f1

f2

f3

f4

(b) Nω = 213

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

(c) Nω = 217

0.0 0.2 0.4 0.6 0.8 1.0
x

4

2

0

2

4

√ λ
k
f k

Figure 5-27. Illustration of first 4 KL modes, computed based on a numerical co-
variance matrices using three sets of RF realizations with cl = 0.20

One can explore the orthogonality of the KLE modes to compute samples of germ ξk, introduced in
Eq. (5.36). These samples are computed via Eq. (eq:xirealiz) and are saved in files xidata* in the
corresponding run directories. Using the ξ samples, one can estimate their density via Kernel Density
Estimate (KDE). Figures 5-28 and 5-29. These figures were generated with

./mkplots.py xidata 0.05 512 ./mkplots.py xidata 0.20 512

./mkplots.py xidata 0.05 131072 ./mkplots.py xidata 0.20 131072

Independent of the correlation length, a relatively large number of samples is required for “converged”
estimates for the density of ξ.

Figures 5-30 and 5-31 show reconstructions of select RF realizations. As observed in the figure showing
the decay in the magnitude of the KL eigenvalues, more terms are needed to represents small scale
features occurring for smaller correlation lengths, in Fig. 5-30, compared to RF with larger correlation
lengths, e.g. the example shown in Fig. 5-31. The plots shown in Figs. 5-30 and 5-31 were generated with

./mkplots.py pltKLrecon1D 0.05 21 51 10

./mkplots.py pltKLrecon1D 0.10 63 21 4

128

(a) Nω = 29

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

(b) Nω = 217

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

Figure 5-28. Probability densities for ξk obtained via KDE using samples obtained
by projecting RF realizations onto KL modes. Results correspond to cl = 0.05.

(a) Nω = 29

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

(b) Nω = 217

4 2 0 2 4

ξ(θ)

0.0

0.1

0.2

0.3

0.4

P
D
F
(ξ

)

ξ1

ξ2

ξ3

ξ4

Figure 5-29. Probability densities for ξk obtained via KDE using samples obtained
by projecting RF realizations onto KL modes. Results correspond to cl = 0.20.

2D Examples on Structured Grids

In this section we are presenting 2D RFs generated with kl_2D.x. The RFs are generated on a
non-uniform structured 2D grid [0, Lx]× [0, Ly], with smaller grid spacing near the boundaries and
larger grid spacing towards the center of the domain. This grid is computed using an algebraic
expression [27]. The first coordinate is computed via

xi = Lx
(2α + β)ri + 2α− β

(2α + 1) (1 + ri)
, ri =

β + 1

β − 1

ηi−α

1−α

, ηi =
i− 1

Np − 1
, i = 1, 2, . . . , Nx (5.44)

The β > 1 factor in the above expression controls the compression near x = 0 and x = Lx, while
α ∈ [0, 1] determines where the clustering occurs. The examples shown in this section are based on
default values for the parameters that control the grid definition in kl_2D.x:

α = 1/2, β = 1.1, Lx1 = Lx2 = L = 1, Nx1 = Nx2 = 65

Figure 5-32 shows the 2D computational grid created with these parameters. This figure was generated
with the Python script “pl2Dsgrid.py”

129

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

0 terms
(b) Mean + 10 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

10 terms
(c) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

20 terms

(d) Mean + 30 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

30 terms
(e) Mean + 40 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

40 terms
(f) Mean + 50 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

50 terms

Figure 5-30. Reconstructing realizations with an increasing number of KL expan-
sion terms for cl = 0.05

./pl2Dsgrid.py cvspl2D_0.1_4096

Figure 5-33 shows 2D RF realizations with correlation lengths cl = 0.1 and cl = 0.2. As the correlation
length increases the realizations become smoother. These figure were generated with

./mkplots.py samples2D 0.1 4096 2 (Figs. 5-33a,5-33b)

./mkplots.py samples2D 0.2 4096 2 (Figs. 5-33c,5-33d)
In a 2D configuration the rhs of Eq. (eq:fredint) is discretized using a 2D finite volume approach:

∫
Cov(x, y)f(y)dy ≈

Nx1−1∑
i=1

Nx2−1∑
j=1

(Cov(x, y)f(y)) |ijAij (5.45)

Here,Aij is the area of rectangle (ij) with lower left corner (i, j) and upper right corner (i+ 1, j + 1),
and (Cov(x, y)f(y)) |ij is the average over rectangle (ij) computed as the arithmetic average of values
at its four vertices. Eq. (5.45) can be further cast as

∫
Cov(x, y)f(y)dy ≈

Nx1∑
i=1

Nx2∑
j=1

(Cov(x, y)f(y))i,j wi,j, (5.46)

wherewi,j is a quarter of the area of all rectangles that surround vertex (i, j).

Figures 5-34 and 5-35 shows first 8 KL modes computed based on covariance matrices that where
estimated from 212 = 4096 and 216 = 65536 number of RF samples, respectively, and correlation
length cl = 0.1 for both sets. The results in Fig. 5-35 are close to the KL modes corresponding to the
analytical covariance matrix (results not shown), while the results in Fig. 5-34 indicate that 212 RF
realizations is not sufficient to generate converged KL modes. These figures were generated with

./mkplots.py numKLevec2D 0.1 4096 (Fig. 5-34)

./mkplots.py numKLevec2D 0.1 65536 (Fig. 5-35)

130

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

0 terms
(b) Mean + 4 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

4 terms
(c) Mean + 8 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

8 terms

(d) Mean + 12 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

12 terms
(e) Mean + 16 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

16 terms
(f) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x

10

0

10

F
n
(x

)

20 terms

Figure 5-31. Reconstructing realizations with an increasing number of KL expan-
sion terms for cl = 0.10

Figure 5-36 shows first 8 KL modes computed based on a covariance matrix that was estimated from
212 = 4096 number of RF samples. For these results, with correlation length cl = 0.5, 212 samples are
sufficient to estimate the covariance matrix and subsequently KL modes that are close to analytical
results (results not shown). The plots in Fig. 5-36 were generated with

./mkplots.py numKLevec2D 0.5 4096

Figures 5-37 and 5-38 show reconstructions of select 2D RF realizations. As observed in the previous
section for 1D RFs, more terms are needed to represents small scale features occurring for smaller
correlation lengths, in Fig. 5-37, compared to RF with larger correlation lengths, e.g. the example shown
in Fig. 5-38. The plots shown in Figs. 5-37 and 5-38 were generated with

./mkplots.py pltKLrecon2D 0.2 3 85 12 (Fig. 5-37)

./mkplots.py pltKLrecon2D 0.5 37 36 5 (Fig. 5-38)

2D Examples on Unstructured Grids

For this example we choose a computational domain that resembles the shape of California. A number
of 212 = 4096 points were randomly distributed inside this computational domain, and a triangular
grid with 8063 triangles was generated via Delaunay triangulation. The 2D grid point locations are
provided in “data/cali_grid.dat” and the grid point connectivities are provided in “data/cali_tria.dat”.
Figure 5-39 shows the placement of these grid points, including an inset plot with the triangular grid
connectivities. This figure shows the grids on a uniform scale in terms of latitude and longitude degrees
and was generated with

./pl2Dugrid.py

Figure 5-40 shows 2D RF realizations with correlation lengths cl = 0.5◦ and cl = 2◦. These figure were
generated with

131

Figure 5-32. Structured grid employed for 2D RF examples.

(a) cl = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) cl = 0.1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) cl = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) cl = 0.2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-33. Sample 2D random field realizations for cl = 0.1 and cl = 0.2.

./mkplots.py samples2Du 0.5 4096 2 (Figs. 5-40a,5-40b)

./mkplots.py samples2Du 2.0 4096 2 (Figs. 5-40c,5-40d)

Figure 5-41 shows first 16 KL modes computed based on a covariance matrix that was estimated from
216 = 65536 number of RF samples, with correlation length cl = 0.5◦. The KL modes corresponding
to an analytically estimated covariance matrix with the same correlation length are shown in Fig. 5-42.
For this example, it seems that 216 samples are sufficient to estimate the first 12 to 13 modes accurately.
Please note that some of the modes can differ up to a multiplicative factor of −1, hence the colorscheme
will be reversed. Higher order modes start diverging from analytical estimates, e.g. modes 14 through 16
in this example. Figure 5-43 shows KL modes corresponding to a covariance matrix estimated from RF
realizations with cl = 2◦. For this correlation length, 216 samples are sufficient to generate KL modes
that are very close to analytical results (not shown). These figures were generated with

./mkplots.py numKLevec2Du 0.5 65536 (Fig. 5-41)

./mkplots.py anlKLevec2Du SqExp 0.5 (Fig. 5-42)

./mkplots.py numKLevec2Du 2.0 65536 (Fig. 5-43)

132

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-34. Illustration of first 8 KL modes, computed based on a numerical co-
variance matrix estimated using 212 2D RF realizations with cl = 0.1

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-35. Illustration of first 8 KL modes, computed based on a numerical co-
variance matrix estimated using 216 2D RF realizations with cl = 0.1

133

(a) Mode 1

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mode 2

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mode 3

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mode 4

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mode 5

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mode 6

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mode 7

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mode 8

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-36. Illustration of first 8 KL modes, computed based on a numerical co-
variance matrix estimated using 212 2D RF realizations with cl = 0.5

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mean + 12 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mean + 24 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mean + 36 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mean + 48 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mean + 60 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mean + 72 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mean + 84 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-37. Reconstructing 2D realizations with an increasing number of KL ex-
pansion terms for cl = 0.2

134

(a) Mean

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(b) Mean + 5 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(c) Mean + 10 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(d) Mean + 15 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(e) Mean + 20 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(f) Mean + 25 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(g) Mean + 30 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

(h) Mean + 35 terms

0.0 0.2 0.4 0.6 0.8 1.0
x1

0.0

0.2

0.4

0.6

0.8

1.0

x
2

Figure 5-38. Reconstructing 2D realizations with an increasing number of KL ex-
pansion terms for cl = 0.5

−124 ◦ −122 ◦ −120 ◦ −118 ◦ −116 ◦

lon

34 ◦

36 ◦

38 ◦

40 ◦

la
t

Figure 5-39. Unstructured grid generated via Delaunay traingulation overlaid over
California.

135

(a) cl = 0.5◦

lon

la
t

(b) cl = 0.5◦

lon

la
t

(c) cl = 2◦

lon

la
t

(d) cl = 2◦

lon

la
t

Figure 5-40. Sample 2D random field realizations on an unstructured grid for cl = 0.5◦

and cl = 2◦.

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon

la
t

Figure 5-41. Illustration of select KL modes, computed based on a numerical co-
variance matrix estimated using 216 2D RF realizations on an unstructured grid with
cl = 0.5◦.

136

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon
la

t

Figure 5-42. Illustration of select KL modes, computed based on an analytical
covariance matrix for 2D RF realizations on an unstructured grid with cl = 0.5◦ and
a square-exponential form.

(a) Mode 1

lon

la
t

(b) Mode 2

lon

la
t

(c) Mode 3

lon

la
t

(d) Mode 6

lon

la
t

(e) Mode 10

lon

la
t

(f) Mode 16

lon

la
t

Figure 5-43. Illustration of select KL modes, computed based on a numerical co-
variance matrix estimated using 216 2D RF realizations on an unstructured grid with
cl = 2◦.

137

6. SUPPORT

UQTk is the subject of continual development and improvement. If you have questions about or
suggestions for UQTk, feel free to concact the UQTk developers through the github discussions site
https://github.com/sandialabs/UQTk/discussions. More information is also available on
the UQTk website at https://www.sandia.gov/UQToolkit/.

139

https://github.com/sandialabs/UQTk/discussions
https://www.sandia.gov/UQToolkit/

REFERENCES

[1] S. Babacan, R. Molina, and A. Katsaggelos. Bayesian compressive sensing using Laplace priors.
IEEE Transactions on Image Processing, 19(1):53–63, 2010.

[2] V. Barthelmann, E. Novak, and K. Ritter. High-dimensional polynomial interpolation on sparse
grids. Adv. Compu. Math., 12:273–288, 2000.

[3] J.M. Bernardo and A.F.M. Smith. Bayesian Theory. Wiley Series in Probability and Statistics. John
Wiley & Sons Ld, Chichester, England, 2000.

[4] E. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information. IEEE Transactions on Information Theory,
52(2):489–509, 2006.

[5] Emmanuel J Candes, Michael B Wakin, and Stephen P Boyd. Enhancing sparsity by reweighted ? 1
minimization. Journal of Fourier analysis and applications, 14(5-6):877–905, 2008.

[6] B. P. Carlin and T. A. Louis. Bayesian Methods for Data Analysis. Chapman and Hall/CRC,
Boca Raton, FL, 2011.

[7] J. Ching and Y.-C. Chen. Transitional markov chain monte carlo method for bayesian model
updating, model class selection, and model averaging. Journal of Engineering Mechanics,
133(7):816–832, 2007.

[8] C. W. Clenshaw and A. R. Curtis. A method for numerical integration on an automatic
computer. Numerische Mathematik, 2:197–205, 1960.

[9] P. Conrad and Y. Marzouk. Adaptive smolyak pseudospectral approximations. SIAM Journal on
Scientific Computing, 35(6):A2643–A2670, 2013.

[10] T. Crestaux, O. Le Maître, and J.M. Martinez. Polynomial chaos expansion for sensitivity analysis.
Reliability Engineering & System Safety, 94(7):1161–1172, 2009.

[11] B.J. Debusschere, H.N. Najm, P.P. Pébay, O.M. Knio, R.G. Ghanem, and O.P. Le Maître.
Numerical challenges in the use of polynomial chaos representations for stochastic processes.
SIAM Journal on Scientific Computing, 26(2):698–719, 2004.

[12] D. Donoho. Compressed sensing. IEEE Trans. Inform. Theory, 52(4):1289–1306, 2006.

[13] A. Doostan and H. Owhadi. A non-adapted sparse approximation of PDEs with stochastic
inputs. J. Comput. Phys., 230(8):3015–3034, 2011.

[14] Andrew Gelman, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis.
Chapman & Hall CRC, 2 edition, 2003.

141

[15] Stuart Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the Bayesian
Restoration of Images. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
PAMI-6(6):721–741, 1984.

[16] Thomas Gerstner and Michael Griebel. Numerical integration using sparse grids. Numerical
Algorithms, 18(3-4):209–232, 1998. (also as SFB 256 preprint 553, Univ. Bonn, 1998).

[17] Thomas Gerstner and Michael Griebel. Dimension adaptive tensor product quadrature.
Computing, 71:2003, 2003.

[18] R.G. Ghanem and P.D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag,
New York, 1991.

[19] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, London, 1996.

[20] G. H. Golub and J. H. Welsch. Calculation of Gauss quadrature rules. Math. Comp., 23:221–230,
1969.

[21] M. Griebel. Sparse grids and related approximation schemes for high dimensional problems. In
Proceedings of the Conference on Foundations of Computational Mathematics, Santander, Spain,
2005.

[22] H. Haario, E. Saksman, and J. Tamminen. An adaptive Metropolis algorithm. Bernoulli,
7:223–242, 2001.

[23] Heikki Haario, Marko Laine, Antonietta Mira, and Eero Saksman. Dram: Efficient adaptive
mcmc. Statistics and Computing, 16(4):339–354, 2006.

[24] Chris Hans. Bayesian Lasso regression. Biometrica, 96:835–845, 2009.

[25] R.G. Haylock and A. O’Hagan. On inference for outputs of computationally expensive
algorithms with uncertainty on the inputs. Bayesian statistics, 5:629–637, 1996.

[26] F.B. Hildebrand. Introduction to Numerical Analysis. Dover, 1987.

[27] K.A Hoffmann and S.T. Chiang. Computational Fluid Dynamics, volume 1, chapter 9, pages
358–426. EES, 2000.

[28] John D Jakeman, Michael S Eldred, and Khachik Sargsyan. Enhancing ℓ1-minimization estimates
of polynomial chaos expansions using basis selection. Journal of Computational Physics, 289:18–34,
2015.

[29] Michiel JW Jansen. Analysis of variance designs for model output. Computer Physics
Communications, 117(1):35–43, 1999.

[30] S. Ji, Y. Xue, and L. Carin. Bayesian compressive sensing. IEEE Transactions on Signal Processing,
56(6):2346–2356, 2008.

[31] M. C. Kennedy and A. O’Hagan. Bayesian calibration of computer models. Journal of the Royal
Statistical Society: Series B, 63(3):425–464, 2001.

142

[32] S. Kucherenko, S. Tarantola, and P. Annoni. Estimation of global sensitivity indices for models
with dependent variables. Computer Physics Communications, 183:937–946, 2012.

[33] O.P. Le Maître and O.M. Knio. Spectral Methods for Uncertainty Quantification. Springer, New
York, NY, 2010.

[34] O.P. Le Maître and O.M. Knio. Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics (Scientific Computation). Springer, 1st edition.
edition, April 2010.

[35] Y. M. Marzouk and H. N. Najm. Dimensionality reduction and polynomial chaos acceleration of
Bayesian inference in inverse problems. Journal of Computational Physics, 228(6):1862–1902, 2009.

[36] E.J. Nyström. Über die praktische auflösung von integralgleichungen mit anwendungen auf
randwertaufgaben. Acta Mathematica, 54(1):185–204, 1930.

[37] J. Oakley and A. O’Hagan. Bayesian inference for the uncertainty distribution of computer model
outputs. Biometrika, 89(4):769–784, 2002.

[38] Mark Orr. Introduction to radial basis function networks. Technical Report, Center for Cognitive
Science, University of Edinburgh, 1996.

[39] Trevor Park and George Casella. The Bayesian Lasso. Journal of the American Statistical
Association, 103(482):681–686, 2008.

[40] H. Rabitz, O. F. Alis, J. Shorter, and K. Shim. Efficient input-output model representations.
Comp. Phys. Comm., 117:11–20, 1999.

[41] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[42] M. Rosenblatt. Remarks on a multivariate transformation. Annals of Mathematical Statistics,
23(3):470 – 472, 1952.

[43] A. Saltelli. Making best use of model evaluations to compute sensitivity indices. Computer Physics
Communications, 145:280–297, 2002.

[44] A. Saltelli, S. Tarantola, F. Campolongo, and M. Ratto. Sensitivity Analysis in Practice: A Guide to
Assessing Scientific Models. John Wiley & Sons, 2004.

[45] Andrea Saltelli, Paola Annoni, Ivano Azzini, Francesca Campolongo, Marco Ratto, and Stefano
Tarantola. Variance based sensitivity analysis of model output. Design and estimator for the total
sensitivity index. Computer Physics Communications, 181(2):259–270, 2010.

[46] K. Sargsyan. Surrogate models for uncertainty propagation and sensitivity analysis. In
R. Ghanem, D. Higdon, and H. Owhadi, editors, Handbook of Uncertainty Quantification.
Springer, 2017.

[47] K. Sargsyan, H.N. Najm, and R. Ghanem. On the Statistical Calibration of Physical Models.
International Journal of Chemical Kinetics, 47(4):246–276, 2015.

143

[48] K. Sargsyan, C. Safta, B. Debusschere, and H. Najm. Multiparameter spectral representation of
noise-induced competence in Bacillus subtilis. IEEE/ACM Trans. Comp. Biol. and Bioinf.,
9(6):1709–1723, 2012.

[49] K. Sargsyan, C. Safta, H. Najm, B. Debusschere, D. Ricciuto, and P. Thornton. Dimensionality
reduction for complex models via Bayesian compressive sensing. International Journal of
Uncertainty Quantification, 4(1):63–93, 2014.

[50] D.W. Scott. Multivariate Density Estimation. Theory, Practice and Visualization. Wiley, New
York, 1992.

[51] B.W. Silverman. Density Estimation for Statistics and Data Analysis. Chapman and Hall, London,
1986.

[52] D. S. Sivia and J. Skilling. Data Analysis: A Bayesian Tutorial, Second Edition. Oxford University
Press, 2006.

[53] D.S. Sivia. Data Analysis: A Bayesian Tutorial. Oxford Science, 1996.

[54] S. A. Smolyak. Quadrature and interpolation formulas for tensor products of certain classes of
functions. Soviet Mathematics Dokl., 4:240–243, 1963.

[55] I. M. Sobol. Sensitivity estimates for nonlinear mathematical models. Math. Modeling and
Comput. Exper., 1:407–414, 1993.

[56] I. M. Sobol. Theorems and examples on high dimensional model representation. Reliability
Engineering and System Safety, 79:187–193, 2003.

[57] Bruno Sudret. Global sensitivity analysis using polynomial chaos expansions. Reliability
Engineering & System Safety, 93(7):964–979, 2008.

[58] M. E. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research, 1:211–244, 2001.

[59] M. E. Tipping and A. C. Faul. Fast marginal likelihood maximisation for sparse Bayesian models.
In C. M. Bishop and J. Frey, editors, Proceedings of the Ninth International Workshop on Artificial
Intelligence and Statistics, 1991.

[60] D. Xiu and J. S. Hesthaven. High-order collocation methods for differential equations with
random inputs. SIAM J. Sci. Comp., 27(3):1118–1139, 2005.

[61] Dongbin Xiu. Efficient collocational approach for parametric uncertainty analysis.
Communications in computational physics, 2(2):293–309, 2007.

[62] K. M. Zuev and J. L. Beck. Asymptotically independent markov sampling: A new mcmc scheme
for Bayesian inference. In Vulnerability, Uncertainty, and Risk : Quantification, Mitigation, and
Management - CDRM 9, pages 2022–2031. 2014.

144

DISTRIBUTION

Email—Internal (encrypt for OUO)

Name Org. Sandia Email Address

CA Technical Library 8551 cateclib@sandia.gov

145

147

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Revision History
	Overview
	Download and Installation
	Requirements
	Download
	Directory Structure
	External Software and Libraries
	Required
	Optional

	Installation
	Configuration flags
	Installation example
	Setting up External Libraries

	Theory and Conventions
	Polynomial Chaos Expansions
	Polynomial Chaos Surrogate
	Construction methods
	Compressive sensing

	Weighted iterative CS for basis selection
	Global sensitivity analysis

	Source Code Description
	C++ Libraries
	mcmc:
	amcmc:
	tmcmc:
	ss:
	mala:
	mmala:

	C++ Applications
	dfi:
	generate_quad:
	gen_mi:
	gp_regr:
	lr_regr:
	model_inf:
	pce_eval:
	pce_quad:
	pce_resp:
	pce_rv:
	pce_sens:
	pdf_cl:
	regression:
	sens:

	Python Modules
	Polynomial Chaos Expansion Tools
	Bayesian Evidence Estimation

	Examples
	Elementary Operations
	Polynomial Fitting
	Forward Propagation of Uncertainty
	Numerical Integration
	Forward Propagation of Uncertainty with PyUQTk
	Surrogate Construction for Genz Functions with PyUQTk
	Sparse Basis Selection with PyUQTk
	Forward Propagation of Uncertainty Using Basis Adaptation
	Bayesian Inference of a Line
	Sampling of Multimodal Posterior PDFs using TMCMC
	Sampling using UM-Bridge
	Forward Propagation of Uncertainties, Surrogate Construction and Global Sensitivity Analysis
	Global Sensitivity Analysis via Sampling
	Karhunen-Loève Expansion of a Stochastic Process

	Support
	References
	Distribution

