logo
In [1]:
import proveit
theory = proveit.Theory() # the theorem's theory

from proveit import defaults
from proveit.physics.quantum.QPE import (
    _Omega, _fail_def, _sample_space_def, _sample_space_bijection, _Omega_is_sample_space)
In [2]:
%proving _pfail_in_real
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
_pfail_in_real:
(see dependencies)
In [3]:
defaults.assumptions = _pfail_in_real.conditions
defaults.assumptions:
In [4]:
pfail = _fail_def.instantiate()
pfail:  ⊢  
In [5]:
pfail_as_event_prob = pfail.inner_expr().rhs.define(_Omega)
pfail_as_event_prob:  ⊢  
In [6]:
fail_event = pfail_as_event_prob.rhs.operand
fail_event:
In [7]:
_sample_space_def
In [8]:
from proveit.logic import SubsetEq
SubsetEq(fail_event, _sample_space_def.rhs).prove()
In [9]:
event_prob_in_domain = pfail_as_event_prob.rhs.deduce_in_prob_domain(_sample_space_def.rhs)
event_prob_in_domain:  ⊢  
In [10]:
pfail_as_event_prob.sub_left_side_into(event_prob_in_domain)
_pfail_in_real may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [11]:
%qed
proveit.physics.quantum.QPE._pfail_in_real has been proven.
Out[11]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4, 5  ⊢  
  : , : , :
2conjecture  ⊢  
 proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real
3conjecture  ⊢  
 proveit.numbers.number_sets.real_numbers.zero_is_real
4instantiation18, 6, 7  ⊢  
  : , : , :
5instantiation8, 9, 10  ⊢  
  : , : , :
6conjecture  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
7instantiation18, 11, 12  ⊢  
  : , : , :
8theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
9instantiation13, 14, 15  ⊢  
  : , :
10instantiation20, 16, 17  ⊢  
  : , : , :
11conjecture  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
12instantiation18, 19, 35  ⊢  
  : , : , :
13conjecture  ⊢  
 proveit.statistics.event_prob_in_interval
14instantiation20, 27, 21  ⊢  
  : , : , :
15modus ponens22, 23  ⊢  
16instantiation24, 25  ⊢  
  :
17instantiation26, 27, 28  ⊢  
  : , : , : , : , :
18theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
19conjecture  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
20theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
21axiom  ⊢  
 proveit.physics.quantum.QPE._sample_space_def
22instantiation29, 30, 31*  ⊢  
  : , : , : , : , : , : , :
23generalization32  ⊢  
24axiom  ⊢  
 proveit.physics.quantum.QPE._fail_def
25assumption  ⊢  
26axiom  ⊢  
 proveit.statistics.prob_of_all_def
27conjecture  ⊢  
 proveit.physics.quantum.QPE._Omega_is_sample_space
28instantiation40, 33  ⊢  
  : , :
29conjecture  ⊢  
 proveit.logic.sets.comprehension.subset_via_condition_constraint
30conjecture  ⊢  
 proveit.numbers.numerals.decimals.posnat1
31instantiation34, 35, 36, 37  ⊢  
  : , : , : , : , :
32axiom  ⊢  
 proveit.logic.booleans.true_axiom
33instantiation38, 39  ⊢  
  : , : , :
34conjecture  ⊢  
 proveit.core_expr_types.conditionals.true_condition_elimination
35theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
36axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
37conjecture  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
38conjecture  ⊢  
 proveit.logic.sets.functions.injections.membership_unfolding
39instantiation40, 41  ⊢  
  : , :
40theorem  ⊢  
 proveit.logic.booleans.conjunction.left_from_and
41instantiation42, 43  ⊢  
  : , : , :
42conjecture  ⊢  
 proveit.logic.sets.functions.bijections.membership_unfolding
43conjecture  ⊢  
 proveit.physics.quantum.QPE._sample_space_bijection
*equality replacement requirements