logo

Axiom _unitary_U of type InSet

from the theory of proveit.physics.quantum.QPE

see dependencies

In [1]:
import proveit
# Automation is not needed when only building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_axiom_expr # Load the stored axiom expression as 'stored_expr'
# import the special expression
from proveit.physics.quantum.QPE import _unitary_U
In [2]:
# check that the built expression is the same as the stored expression
assert _unitary_U.expr == stored_expr
assert _unitary_U.expr._style_id == stored_expr._style_id
print("Passed sanity check: _unitary_U matches stored_expr")
Passed sanity check: _unitary_U matches stored_expr
In [3]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
U \in \textrm{U}\left(2^{s}\right)
In [4]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [5]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Literal
4Operationoperator: 5
operand: 7
5Literal
6ExprTuple7
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Literal
11Literal