\begin{array}{l}\forall_{e \in \{1~\ldotp \ldotp~2^{t - 1} - 2\}}~\\
\left(\left[P_{\rm success}\right]\left(e\right) = \left[\begin{array}{l}\textrm{Prob}_{m \in \{0~\ldotp \ldotp~2^{t} - 1\}~|~\left|m - b_{\textit{f}}\right|_{\textup{mod}\thinspace 2^{t}} \leq e}~\\
\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
\qin{\lvert + \rangle} & \multigate{4}{\textrm{QPE}\left(U, t\right)} & \meter & \multiqout{3}{\lvert m \rangle_{t}} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} & \ghost{\textrm{QPE}\left(U, t\right)} & \measure{\begin{array}{c}:\\ \left(t - 3\right) \times \\:\end{array}} \qw & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\lvert + \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & \meter & \ghostqout{\lvert m \rangle_{t}} \\
\qin{\lvert u \rangle} & \ghost{\textrm{QPE}\left(U, t\right)} & { /^{s} } \qw & \qout{\lvert u \rangle}
} \end{array}\right)\end{array}\right]\right)\end{array}