from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Integer
from proveit.physics.quantum.QPE import _neg_domain

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(_neg_domain, Integer)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\{-2^{t - 1} + 1~\ldotp \ldotp~-\left(e + 1\right)\}, \mathbb{Z}\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Literal
3Literal
4ExprTuple5, 6
5Operationoperator: 19
operands: 7
6Operationoperator: 23
operand: 10
7ExprTuple9, 25
8ExprTuple10
9Operationoperator: 23
operand: 13
10Operationoperator: 19
operands: 12
11ExprTuple13
12ExprTuple14, 25
13Operationoperator: 15
operands: 16
14Variable
15Literal
16ExprTuple17, 18
17Literal
18Operationoperator: 19
operands: 20
19Literal
20ExprTuple21, 22
21Literal
22Operationoperator: 23
operand: 25
23Literal
24ExprTuple25
25Literal