# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Add, Neg, one, subtract
from proveit.physics.quantum.QPE import _two_pow__t_minus_one

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(subtract(one, _two_pow__t_minus_one), Add(Neg(_two_pow__t_minus_one), one))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(1 - 2^{t - 1}, -2^{t - 1} + 1\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 12
operands: 3
2Operationoperator: 12
operands: 4
3ExprTuple18, 5
4ExprTuple5, 18
5Operationoperator: 16
operand: 7
6ExprTuple7
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11
10Literal
11Operationoperator: 12
operands: 13
12Literal
13ExprTuple14, 15
14Literal
15Operationoperator: 16
operand: 18
16Literal
17ExprTuple18
18Literal