# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Add, Mult, Neg, one, subtract, two

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(subtract(two, one), e), Add(Mult(two, e), Mult(Neg(one), e)))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\left(2 - 1\right) \cdot e, \left(2 \cdot e\right) + \left(\left(-1\right) \cdot e\right)\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 11
operands: 3
2Operationoperator: 8
operands: 4
3ExprTuple5, 15
4ExprTuple6, 7
5Operationoperator: 8
operands: 9
6Operationoperator: 11
operands: 10
7Operationoperator: 11
operands: 12
8Literal
9ExprTuple13, 14
10ExprTuple13, 15
11Literal
12ExprTuple14, 15
13Literal
14Operationoperator: 16
operand: 18
15Variable
16Literal
17ExprTuple18
18Literal