# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Add, Complex, Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _two_pow_t

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Add(Neg(Mult(frac(one, Exp(two, one)), _two_pow_t)), one, Neg(e)), Complex)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(-\left(\frac{1}{2^{1}} \cdot 2^{t}\right) + 1 - e, \mathbb{C}\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Literal
3Literal
4ExprTuple5, 24, 6
5Operationoperator: 8
operand: 10
6Operationoperator: 8
operand: 11
7ExprTuple10
8Literal
9ExprTuple11
10Operationoperator: 12
operands: 13
11Variable
12Literal
13ExprTuple14, 15
14Operationoperator: 16
operands: 17
15Operationoperator: 21
operands: 18
16Literal
17ExprTuple24, 19
18ExprTuple23, 20
19Operationoperator: 21
operands: 22
20Literal
21Literal
22ExprTuple23, 24
23Literal
24Literal