logo

Expression of type Add

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.numbers import one, subtract
from proveit.physics.quantum.QPE import _two_pow__t_minus_one
In [2]:
# build up the expression from sub-expressions
expr = subtract(one, _two_pow__t_minus_one)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
1 - 2^{t - 1}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 9
operands: 1
1ExprTuple15, 2
2Operationoperator: 13
operand: 4
3ExprTuple4
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8
7Literal
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple11, 12
11Literal
12Operationoperator: 13
operand: 15
13Literal
14ExprTuple15
15Literal