# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, frac, one, subtract, two, zero
from proveit.physics.quantum.QPE import _two_pow_t

In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(frac(one, Exp(two, one)), _two_pow_t)
expr = ExprTuple(subtract(sub_expr1, sub_expr1), zero)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\left(\frac{1}{2^{1}} \cdot 2^{t}\right) - \left(\frac{1}{2^{1}} \cdot 2^{t}\right), 0\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Literal
3Literal
4ExprTuple8, 5
5Operationoperator: 6
operand: 8
6Literal
7ExprTuple8
8Operationoperator: 9
operands: 10
9Literal
10ExprTuple11, 12
11Operationoperator: 13
operands: 14
12Operationoperator: 18
operands: 15
13Literal
14ExprTuple21, 16
15ExprTuple20, 17
16Operationoperator: 18
operands: 19
17Literal
18Literal
19ExprTuple20, 21
20Literal
21Literal