logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _two_pow_t
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(frac(one, Exp(two, one)), _two_pow_t)
expr = ExprTuple(sub_expr1, Neg(sub_expr1))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{2^{1}} \cdot 2^{t}, -\left(\frac{1}{2^{1}} \cdot 2^{t}\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple4, 1
1Operationoperator: 2
operand: 4
2Literal
3ExprTuple4
4Operationoperator: 5
operands: 6
5Literal
6ExprTuple7, 8
7Operationoperator: 9
operands: 10
8Operationoperator: 14
operands: 11
9Literal
10ExprTuple17, 12
11ExprTuple16, 13
12Operationoperator: 14
operands: 15
13Literal
14Literal
15ExprTuple16, 17
16Literal
17Literal