logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Add, Neg, one
from proveit.physics.quantum.QPE import _two_pow__t_minus_one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(e, Add(Neg(_two_pow__t_minus_one), one, Neg(e)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(e, -2^{t - 1} + 1 - e\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple8, 1
1Operationoperator: 13
operands: 2
2ExprTuple3, 19, 4
3Operationoperator: 17
operand: 7
4Operationoperator: 17
operand: 8
5ExprTuple7
6ExprTuple8
7Operationoperator: 9
operands: 10
8Variable
9Literal
10ExprTuple11, 12
11Literal
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15, 16
15Literal
16Operationoperator: 17
operand: 19
17Literal
18ExprTuple19
19Literal