# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple, e
from proveit.numbers import Add, Neg, one
from proveit.physics.quantum.QPE import _two_pow__t_minus_one

In [2]:
# build up the expression from sub-expressions
sub_expr1 = Neg(_two_pow__t_minus_one)

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(e + \left(-2^{t - 1} + 1 - e\right), -2^{t - 1} + 1\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 17
operands: 3
2Operationoperator: 17
operands: 4
3ExprTuple12, 5
4ExprTuple7, 23
5Operationoperator: 17
operands: 6
6ExprTuple7, 23, 8
7Operationoperator: 21
operand: 11
8Operationoperator: 21
operand: 12
9ExprTuple11
10ExprTuple12
11Operationoperator: 13
operands: 14
12Variable
13Literal
14ExprTuple15, 16
15Literal
16Operationoperator: 17
operands: 18
17Literal
18ExprTuple19, 20
19Literal
20Operationoperator: 21
operand: 23
21Literal
22ExprTuple23
23Literal