# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Add, Exp, Mult, Neg, one, two
from proveit.physics.quantum.QPE import _t, _two_pow_t

In [2]:
# build up the expression from sub-expressions
sub_expr1 = Neg(one)
expr = ExprTuple(Mult(Exp(two, sub_expr1), _two_pow_t), Exp(two, Add(sub_expr1, _t)))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(2^{-1} \cdot 2^{t}, 2^{-1 + t}\right)

In [5]:
stored_expr.style_options()

namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 3
operands: 4
2Operationoperator: 10
operands: 5
3Literal
4ExprTuple6, 7
5ExprTuple14, 8
6Operationoperator: 10
operands: 9
7Operationoperator: 10
operands: 11
8Operationoperator: 12
operands: 13
9ExprTuple14, 15
10Literal
11ExprTuple14, 16
12Literal
13ExprTuple15, 16
14Literal
15Operationoperator: 17
operand: 19
16Literal
17Literal
18ExprTuple19
19Literal