logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Exp, Mult, Neg, frac, one, two
from proveit.physics.quantum.QPE import _t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(one, Exp(two, frac(_t, two))), Exp(two, Neg(Mult(frac(one, two), _t))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{2^{\frac{t}{2}}}, 2^{-\left(\frac{1}{2} \cdot t\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 18
operands: 3
2Operationoperator: 7
operands: 4
3ExprTuple20, 5
4ExprTuple21, 6
5Operationoperator: 7
operands: 8
6Operationoperator: 9
operand: 12
7Literal
8ExprTuple21, 11
9Literal
10ExprTuple12
11Operationoperator: 18
operands: 13
12Operationoperator: 14
operands: 15
13ExprTuple17, 21
14Literal
15ExprTuple16, 17
16Operationoperator: 18
operands: 19
17Literal
18Literal
19ExprTuple20, 21
20Literal
21Literal