logo

Expression of type ExprTuple

from the theory of proveit.physics.quantum.QPE

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, k, m
from proveit.numbers import Exp, Mult, Sum, e, frac, i, one, pi, two
from proveit.physics.quantum import NumBra, NumKet, Qmult
from proveit.physics.quantum.QFT import InverseFourierTransform
from proveit.physics.quantum.QPE import _m_domain, _phase, _t
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(one, Exp(two, frac(_t, two))), Sum(index_or_indices = [k], summand = Mult(Exp(e, Mult(two, pi, i, _phase, k)), Qmult(NumBra(m, _t), InverseFourierTransform(_t), NumKet(k, _t))), domain = _m_domain))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{1}{2^{\frac{t}{2}}}, \sum_{k = 0}^{2^{t} - 1} \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \varphi \cdot k} \cdot \left({_{t}}\langle m \rvert \thinspace {\mathrm {FT}}^{\dag}_{t} \thinspace \lvert k \rangle_{t}\right)\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 14
operands: 3
2Operationoperator: 4
operand: 7
3ExprTuple57, 6
4Literal
5ExprTuple7
6Operationoperator: 51
operands: 8
7Lambdaparameter: 48
body: 10
8ExprTuple55, 11
9ExprTuple48
10Conditionalvalue: 12
condition: 13
11Operationoperator: 14
operands: 15
12Operationoperator: 34
operands: 16
13Operationoperator: 17
operands: 18
14Literal
15ExprTuple56, 55
16ExprTuple19, 20
17Literal
18ExprTuple48, 21
19Operationoperator: 51
operands: 22
20Operationoperator: 23
operands: 24
21Operationoperator: 25
operands: 26
22ExprTuple27, 28
23Literal
24ExprTuple29, 30, 31
25Literal
26ExprTuple32, 33
27Literal
28Operationoperator: 34
operands: 35
29Operationoperator: 36
operands: 37
30Operationoperator: 38
operand: 56
31Operationoperator: 40
operands: 41
32Literal
33Operationoperator: 42
operands: 43
34Literal
35ExprTuple55, 44, 45, 46, 48
36Literal
37ExprTuple47, 56
38Literal
39ExprTuple56
40Literal
41ExprTuple48, 56
42Literal
43ExprTuple49, 50
44Literal
45Literal
46Literal
47Variable
48Variable
49Operationoperator: 51
operands: 52
50Operationoperator: 53
operand: 57
51Literal
52ExprTuple55, 56
53Literal
54ExprTuple57
55Literal
56Literal
57Literal