import proveit
# Prepare this notebook for defining the axioms of a theory:
%axioms_notebook # Keep this at the top following 'import proveit'.
from proveit import ExprRange
from proveit.logic import Forall, Equals, Set
from proveit import a, b, k, n, x
from proveit.core_expr_types import a_1_to_n
from proveit.numbers import one, two, Mult, Add, Complex, Natural, Exp
%begin axioms
mult_def = \
Forall((n, x), Equals(Mult(n, x), Add(ExprRange(k, x, one, n))),
domains=(Natural, Complex))
empty_mult = Equals(Mult(), one)
multi_mult_def = \
Forall(n, Forall((a_1_to_n, b),
Equals(Mult(a_1_to_n, b), Mult(Mult(a_1_to_n), b)),
domain=Complex),
domain=Natural)
%end axioms