logo
In [1]:
import proveit
from proveit import defaults
# from proveit.core_expr_types import
from proveit import a, b, x, y
from proveit.numbers import frac
from proveit.numbers.divisibility  import divides_def
from proveit.numbers.number_sets.integers import int_membership_is_bool
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving divides_is_bool
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
divides_is_bool:
(see dependencies)
divides_is_bool may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [3]:
defaults.assumptions = divides_is_bool.conditions
defaults.assumptions:
In [4]:
divides_def
In [5]:
divides_def_inst = divides_def.instantiate(
    {x:x, y:y})
divides_def_inst:  ⊢  
In [6]:
int_membership_is_bool
In [7]:
int_membership_is_bool_inst = int_membership_is_bool.instantiate({x:frac(y, x)})
int_membership_is_bool_inst:  ⊢  
In [8]:
divides_def_inst.sub_left_side_into(int_membership_is_bool_inst)
In [9]:
%qed
proveit.numbers.divisibility.divides_is_bool has been proven.
Out[9]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , : , :
2theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
3instantiation5  ⊢  
  :
4instantiation6  ⊢  
  : , :
5conjecture  ⊢  
 proveit.numbers.number_sets.integers.int_membership_is_bool
6axiom  ⊢  
 proveit.numbers.divisibility.divides_def