import proveit
# Prepare this notebook for defining the theorems of a theory:
%theorems_notebook # Keep this at the top following 'import proveit'.
from proveit.logic import Forall, And, Equals, InSet, NotInSet, Intersect
from proveit import m, x
from proveit.core_expr_types import A_1_to_m
from proveit.logic.sets import x_in_every_A, x_notin_some_A
from proveit.numbers import NaturalPos
%begin theorems
membership_unfolding = Forall(m, Forall((x, A_1_to_m), x_in_every_A,
conditions=[InSet(x, Intersect(A_1_to_m))]),
domain=NaturalPos)
membership_folding = Forall(m, Forall((x, A_1_to_m), InSet(x, Intersect(A_1_to_m)),
conditions=[x_in_every_A]),
domain=NaturalPos)
nonmembership_equiv = Forall(m, Forall((x, A_1_to_m),
Equals(NotInSet(x, Intersect(A_1_to_m)),
x_notin_some_A)),
domain=NaturalPos)
nonmembership_folding = Forall(m, Forall((x, A_1_to_m),
NotInSet(x, Intersect(A_1_to_m)),
conditions=[x_notin_some_A]),
domain=NaturalPos)
%end theorems