logo
In [1]:
import proveit
from proveit.logic.sets.equivalence  import set_not_equiv_def
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving set_not_equiv_is_bool
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
set_not_equiv_is_bool:
(see dependencies)
In [3]:
set_not_equiv_def
In [4]:
set_not_equiv_def_inst = set_not_equiv_def.instantiate()
set_not_equiv_def_inst:  ⊢  
In [5]:
negation_in_bool = set_not_equiv_def_inst.rhs.deduce_in_bool()
negation_in_bool:  ⊢  
In [6]:
set_not_equiv_def_inst.sub_left_side_into(negation_in_bool)
set_not_equiv_is_bool may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [7]:
%qed
proveit.logic.sets.equivalence.set_not_equiv_is_bool has been proven.
Out[7]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , : , :
2theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
3instantiation5, 6  ⊢  
  :
4instantiation7  ⊢  
  : , :
5conjecture  ⊢  
 proveit.logic.booleans.negation.closure
6instantiation8  ⊢  
  : , :
7axiom  ⊢  
 proveit.logic.sets.equivalence.set_not_equiv_def
8conjecture  ⊢  
 proveit.logic.sets.equivalence.set_equiv_is_bool