logo
In [1]:
import proveit
from proveit import defaults
from proveit import x, y
from proveit.logic import NotEquals, Not, Equals, TRUE, FALSE, InSet, NotInSet, Set
from proveit.logic.equality  import not_equals_def
from proveit.logic.equality import sub_right_side_into
from proveit.logic.sets.enumeration import not_in_singleton_equiv, in_singleton_eval_true, singleton_def
%proving in_singleton_eval_false
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
in_singleton_eval_false:
(see dependencies)
in_singleton_eval_false may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [2]:
defaults.assumptions = in_singleton_eval_false.conditions
defaults.assumptions:
In [3]:
step1 = not_equals_def.instantiate({x:x, y:y})
step1:  ⊢  
In [4]:
state1 = Equals(NotEquals(x,y), TRUE).prove()
state1:  ⊢  
In [5]:
step1.sub_right_side_into(state1)
In [6]:
state2 = Equals(Equals(x,y), FALSE).prove()
state2:  ⊢  
In [7]:
state3 = singleton_def.instantiate({x:x, y:y})
state3:  ⊢  
In [8]:
goal = state3.sub_left_side_into(state2)
goal:  ⊢  
In [9]:
goal.generalize([x,y], conditions = in_singleton_eval_false.conditions)
In [10]:
%qed
proveit.logic.sets.enumeration.in_singleton_eval_false has been proven.
Out[10]:
 step typerequirementsstatement
0generalization1  ⊢  
1instantiation2, 3, 4  ⊢  
  : , : , :
2theorem  ⊢  
 proveit.logic.equality.sub_left_side_into
3instantiation5, 6  ⊢  
  :
4instantiation7  ⊢  
  : , :
5axiom  ⊢  
 proveit.logic.booleans.negation.negation_elim
6instantiation8, 9  ⊢  
  : , :
7conjecture  ⊢  
 proveit.logic.sets.enumeration.singleton_def
8theorem  ⊢  
 proveit.logic.equality.unfold_not_equals
9assumption  ⊢