logo
In [1]:
import proveit
from proveit.logic import Equals
from proveit.logic.equality  import substitution
from proveit import a, c, x, y, fa
theory = proveit.Theory() # the theorem's theory
In [2]:
%proving unary_evaluation
With these allowed/disallowed theorem/theory presumptions (e.g., to avoid circular dependencies), we begin our proof of
unary_evaluation:
(see dependencies)
In [3]:
substitution
In [4]:
substitution.instantiate({y:a}, assumptions=[Equals(x, a)])
unary_evaluation may now be readily provable (assuming required theorems are usable).  Simply execute "%qed".
In [5]:
assumptions = [unary_evaluation.instance_expr.antecedent,
              unary_evaluation.instance_expr.consequent.antecedent]
assumptions:
In [6]:
unary_evaluation.instance_expr.consequent.consequent.conclude_via_transitivity(assumptions=assumptions)
In [7]:
unary_evaluation.instance_expr.prove()
In [8]:
%qed
proveit.logic.equality.unary_evaluation has been proven.
Out[8]:
 step typerequirementsstatement
0generalization1  ⊢  
1deduction2  ⊢  
2deduction3  ⊢  
3instantiation4, 5, 6,  ⊢  
  : , : , :
4axiom  ⊢  
 proveit.logic.equality.equals_transitivity
5instantiation7, 8  ⊢  
  : , : , :
6assumption  ⊢  
7axiom  ⊢  
 proveit.logic.equality.substitution
8assumption  ⊢