import proveit
# Prepare this notebook for defining the theorems of a theory:
%theorems_notebook # Keep this at the top following 'import proveit'.
from proveit import (a, b, b_of_j, b_of_k, c, d, f, g, i, j, k, m, n, t,
x, y, z, fj, gj, fy, A, P, U, V, W, S, alpha, beta)
from proveit import Function, ExprRange, IndexedVar
from proveit.core_expr_types import (bj, a_1_to_m, x_1_to_i, x_1_to_m,
y_1_to_j, z_1_to_k, z_1_to_n)
from proveit.core_expr_types import (
a_1_to_i, b_1_to_j, c_1_to_j, c_1_to_k, d_1_to_k)
from proveit.logic import Equals, Forall, Implies, Iff, InSet, InClass, SubsetEq
from proveit.numbers import Add, Mult, Exp, Sum
from proveit.numbers import one
from proveit.numbers import (Integer, Interval, Natural, NaturalPos,
Rational, Real, Complex)
from proveit.linear_algebra import (
VecSpaces, LinMap, ScalarMult, MatrixSpace,
TensorProd, MatrixMult, Unitary, SpecialUnitary)
%begin theorems
rational_matrix_space_is_vec_space = Forall(
(m, n), InClass(MatrixSpace(Rational, m, n),
VecSpaces(Rational)),
domain=NaturalPos)
real_matrix_space_is_vec_space = Forall(
(m, n), InClass(MatrixSpace(Real, m, n),
VecSpaces(Real)),
domain=NaturalPos)
complex_matrix_space_is_vec_space = Forall(
(m, n), InClass(MatrixSpace(Complex, m, n),
VecSpaces(Complex)),
domain=NaturalPos)
eigen_pow = (
Forall(k,
Forall(b,
Forall((A, x),
Implies(Equals(MatrixMult(A, x), ScalarMult(b, x)),
Equals(MatrixMult(Exp(A, k), x), ScalarMult(Exp(b, k), x)))),
domain=Complex), domain=NaturalPos))
unitaries_are_matrices = Forall(
n, SubsetEq(Unitary(n), MatrixSpace(Complex, n, n)),
domain=NaturalPos)
special_unitaries_are_matrices = Forall(
n, SubsetEq(SpecialUnitary(n), MatrixSpace(Complex, n, n)),
domain=NaturalPos)
%end theorems