logo

Theorems (or conjectures) for the theory of proveit.core_expr_types.expr_arrays

In [1]:
import proveit
# Prepare this notebook for defining the theorems of a theory:
%theorems_notebook # Keep this at the top following 'import proveit'.

from proveit import ExprTuple, ExprArray, VertExprArray, ExprRange, IndexedVar
from proveit import a, b, c, d, f, i, j, k, m, n, fab
from proveit.logic import Forall, Equals, And, Or, NotEquals, InSet
from proveit.core_expr_types import \
    (a_1_to_i, b_1_to_i, b_1_to_j, c_1_to_i)
from proveit.numbers import zero, one
from proveit.numbers import Natural, NaturalPos, Add, subtract
In [2]:
%begin theorems
Defining theorems for theory 'proveit.core_expr_types.expr_arrays'
Subsequent end-of-cell assignments will define theorems
'%end theorems' will finalize the definitions
In [3]:
array_eq_via_elem_eq = Forall(i, Forall((a_1_to_i, b_1_to_i),
                                        Equals(ExprArray(a_1_to_i), ExprArray(b_1_to_i)),
                                        conditions=[ExprRange(k, Equals(IndexedVar(a, k),
                                                                        IndexedVar(b, k)),
                                                              one, i)]),
                              domain=NaturalPos)
array_eq_via_elem_eq (conjecture without proof):

In [4]:
varray_eq_via_elem_eq = Forall(
    i, Forall((a_1_to_i, b_1_to_i),
              Equals(VertExprArray(a_1_to_i), VertExprArray(b_1_to_i)),
              conditions=[ExprRange(k, Equals(IndexedVar(a, k),
                                              IndexedVar(b, k)),
                                    one, i)]),
    domain=NaturalPos)
varray_eq_via_elem_eq (conjecture without proof):

In [5]:
array_neq_via_any_elem_neq = Forall(
    i, Forall((a_1_to_i, b_1_to_i),
              NotEquals(ExprArray(a_1_to_i), ExprArray(b_1_to_i)),
              condition=Or(ExprRange(k, NotEquals(IndexedVar(a, k),
                                                  IndexedVar(b, k)),
                                     one, i))),
    domain=NaturalPos)
array_neq_via_any_elem_neq (conjecture without proof):

In [6]:
varray_neq_via_any_elem_neq = Forall(
    i, Forall((a_1_to_i, b_1_to_i),
              NotEquals(VertExprArray(a_1_to_i), VertExprArray(b_1_to_i)),
              condition=Or(ExprRange(k, NotEquals(IndexedVar(a, k),
                                                  IndexedVar(b, k)),
                                     one, i))),
    domain=NaturalPos)
varray_neq_via_any_elem_neq (conjecture without proof):

In [7]:
%end theorems
These theorems may now be imported from the theory package: proveit.core_expr_types.expr_arrays