1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Cauchy distribution.

use num_traits::{Float, FloatConst};
use crate::{Distribution, Standard};
use rand::Rng;
use core::fmt;

/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
///
/// Note that at least for `f32`, results are not fully portable due to minor
/// differences in the target system's *tan* implementation, `tanf`.
///
/// # Example
///
/// ```
/// use rand_distr::{Cauchy, Distribution};
///
/// let cau = Cauchy::new(2.0, 5.0).unwrap();
/// let v = cau.sample(&mut rand::thread_rng());
/// println!("{} is from a Cauchy(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
    median: F,
    scale: F,
}

/// Error type returned from `Cauchy::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `scale <= 0` or `nan`.
    ScaleTooSmall,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::ScaleTooSmall => "scale is not positive in Cauchy distribution",
        })
    }
}

#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}

impl<F> Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
    /// Construct a new `Cauchy` with the given shape parameters
    /// `median` the peak location and `scale` the scale factor.
    pub fn new(median: F, scale: F) -> Result<Cauchy<F>, Error> {
        if !(scale > F::zero()) {
            return Err(Error::ScaleTooSmall);
        }
        Ok(Cauchy { median, scale })
    }
}

impl<F> Distribution<F> for Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        // sample from [0, 1)
        let x = Standard.sample(rng);
        // get standard cauchy random number
        // note that π/2 is not exactly representable, even if x=0.5 the result is finite
        let comp_dev = (F::PI() * x).tan();
        // shift and scale according to parameters
        self.median + self.scale * comp_dev
    }
}

#[cfg(test)]
mod test {
    use super::*;

    fn median(numbers: &mut [f64]) -> f64 {
        sort(numbers);
        let mid = numbers.len() / 2;
        numbers[mid]
    }

    fn sort(numbers: &mut [f64]) {
        numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
    }

    #[test]
    fn test_cauchy_averages() {
        // NOTE: given that the variance and mean are undefined,
        // this test does not have any rigorous statistical meaning.
        let cauchy = Cauchy::new(10.0, 5.0).unwrap();
        let mut rng = crate::test::rng(123);
        let mut numbers: [f64; 1000] = [0.0; 1000];
        let mut sum = 0.0;
        for number in &mut numbers[..] {
            *number = cauchy.sample(&mut rng);
            sum += *number;
        }
        let median = median(&mut numbers);
        #[cfg(feature = "std")]
        std::println!("Cauchy median: {}", median);
        assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
        let mean = sum / 1000.0;
        #[cfg(feature = "std")]
        std::println!("Cauchy mean: {}", mean);
        // for a Cauchy distribution the mean should not converge
        assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_zero() {
        Cauchy::new(0.0, 0.0).unwrap();
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_neg() {
        Cauchy::new(0.0, -10.0).unwrap();
    }

    #[test]
    fn value_stability() {
        fn gen_samples<F: Float + FloatConst + core::fmt::Debug>(m: F, s: F, buf: &mut [F])
        where Standard: Distribution<F> {
            let distr = Cauchy::new(m, s).unwrap();
            let mut rng = crate::test::rng(353);
            for x in buf {
                *x = rng.sample(&distr);
            }
        }

        let mut buf = [0.0; 4];
        gen_samples(100f64, 10.0, &mut buf);
        assert_eq!(&buf, &[
            77.93369152808678,
            90.1606912098641,
            125.31516221323625,
            86.10217834773925
        ]);

        // Unfortunately this test is not fully portable due to reliance on the
        // system's implementation of tanf (see doc on Cauchy struct).
        let mut buf = [0.0; 4];
        gen_samples(10f32, 7.0, &mut buf);
        let expected = [15.023088, -5.446413, 3.7092876, 3.112482];
        for (a, b) in buf.iter().zip(expected.iter()) {
            assert_almost_eq!(*a, *b, 1e-5);
        }
    }
}