1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Cauchy distribution.
use num_traits::{Float, FloatConst};
use crate::{Distribution, Standard};
use rand::Rng;
use core::fmt;
/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
///
/// Note that at least for `f32`, results are not fully portable due to minor
/// differences in the target system's *tan* implementation, `tanf`.
///
/// # Example
///
/// ```
/// use rand_distr::{Cauchy, Distribution};
///
/// let cau = Cauchy::new(2.0, 5.0).unwrap();
/// let v = cau.sample(&mut rand::thread_rng());
/// println!("{} is from a Cauchy(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
median: F,
scale: F,
}
/// Error type returned from `Cauchy::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `scale <= 0` or `nan`.
ScaleTooSmall,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ScaleTooSmall => "scale is not positive in Cauchy distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
impl<F> Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
/// Construct a new `Cauchy` with the given shape parameters
/// `median` the peak location and `scale` the scale factor.
pub fn new(median: F, scale: F) -> Result<Cauchy<F>, Error> {
if !(scale > F::zero()) {
return Err(Error::ScaleTooSmall);
}
Ok(Cauchy { median, scale })
}
}
impl<F> Distribution<F> for Cauchy<F>
where F: Float + FloatConst, Standard: Distribution<F>
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// sample from [0, 1)
let x = Standard.sample(rng);
// get standard cauchy random number
// note that π/2 is not exactly representable, even if x=0.5 the result is finite
let comp_dev = (F::PI() * x).tan();
// shift and scale according to parameters
self.median + self.scale * comp_dev
}
}
#[cfg(test)]
mod test {
use super::*;
fn median(numbers: &mut [f64]) -> f64 {
sort(numbers);
let mid = numbers.len() / 2;
numbers[mid]
}
fn sort(numbers: &mut [f64]) {
numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
}
#[test]
fn test_cauchy_averages() {
// NOTE: given that the variance and mean are undefined,
// this test does not have any rigorous statistical meaning.
let cauchy = Cauchy::new(10.0, 5.0).unwrap();
let mut rng = crate::test::rng(123);
let mut numbers: [f64; 1000] = [0.0; 1000];
let mut sum = 0.0;
for number in &mut numbers[..] {
*number = cauchy.sample(&mut rng);
sum += *number;
}
let median = median(&mut numbers);
#[cfg(feature = "std")]
std::println!("Cauchy median: {}", median);
assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
let mean = sum / 1000.0;
#[cfg(feature = "std")]
std::println!("Cauchy mean: {}", mean);
// for a Cauchy distribution the mean should not converge
assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
}
#[test]
#[should_panic]
fn test_cauchy_invalid_scale_zero() {
Cauchy::new(0.0, 0.0).unwrap();
}
#[test]
#[should_panic]
fn test_cauchy_invalid_scale_neg() {
Cauchy::new(0.0, -10.0).unwrap();
}
#[test]
fn value_stability() {
fn gen_samples<F: Float + FloatConst + core::fmt::Debug>(m: F, s: F, buf: &mut [F])
where Standard: Distribution<F> {
let distr = Cauchy::new(m, s).unwrap();
let mut rng = crate::test::rng(353);
for x in buf {
*x = rng.sample(&distr);
}
}
let mut buf = [0.0; 4];
gen_samples(100f64, 10.0, &mut buf);
assert_eq!(&buf, &[
77.93369152808678,
90.1606912098641,
125.31516221323625,
86.10217834773925
]);
// Unfortunately this test is not fully portable due to reliance on the
// system's implementation of tanf (see doc on Cauchy struct).
let mut buf = [0.0; 4];
gen_samples(10f32, 7.0, &mut buf);
let expected = [15.023088, -5.446413, 3.7092876, 3.112482];
for (a, b) in buf.iter().zip(expected.iter()) {
assert_almost_eq!(*a, *b, 1e-5);
}
}
}