1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#[cfg(feature = "extern")]
pub mod ex;

#[cfg(feature = "python")]
pub mod py;

mod test;

/// The worm-like chain (WLC) model thermodynamics in the isotensional ensemble approximated using a Legendre transformation.
pub mod legendre;

use std::f64::consts::PI;
use crate::math::
{
    inverse_newton_raphson_powered,
    integrate_1d
};
use crate::physics::
{
    PLANCK_CONSTANT,
    BOLTZMANN_CONSTANT
};
use crate::physics::single_chain::
{
    ONE,
    ZERO,
    POINTS
};
use super::isometric::nondimensional_force as isometric_nondimensional_force;
use super::isometric::nondimensional_helmholtz_free_energy as isometric_nondimensional_helmholtz_free_energy;
use super::isometric::nondimensional_relative_helmholtz_free_energy as isometric_nondimensional_relative_helmholtz_free_energy;

/// The structure of the thermodynamics of the WLC model in the isotensional ensemble.
pub struct WLC
{
    /// The mass of each hinge in the chain in units of kg/mol.
    pub hinge_mass: f64,

    /// The length of each link in the chain in units of nm.
    pub link_length: f64,

    /// The number of links in the chain.
    pub number_of_links: u8,

    /// The persistance length of the chain in units of nm.
    pub persistance_length: f64,

    nondimensional_persistance_length: f64,

    /// The thermodynamic functions of the model in the isotensional ensemble approximated using a Legendre transformation.
    pub legendre: self::legendre::WLC
}

/// The expected end-to-end length as a function of the applied force and temperature, parameterized by the number of links, link length, and persistance length.
pub fn end_to_end_length(number_of_links: &u8, link_length: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    link_length*nondimensional_end_to_end_length(number_of_links, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature))
}

/// The expected end-to-end length per link as a function of the applied force and temperature, parameterized by the number of links, link length, and persistance length.
pub fn end_to_end_length_per_link(number_of_links: &u8, link_length: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    link_length*nondimensional_end_to_end_length_per_link(number_of_links, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature))
}

/// The expected nondimensional end-to-end length as a function of the applied nondimensional force, parameterized by the number of links and nondimensional persistance length.
pub fn nondimensional_end_to_end_length(number_of_links: &u8, nondimensional_persistance_length: &f64, nondimensional_force: &f64) -> f64
{
    let f = &|nondimensional_end_to_end_length_per_link: &f64| isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, nondimensional_end_to_end_length_per_link);
    let fp = &|nondimensional_end_to_end_length_per_link: &f64| (isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, &(nondimensional_end_to_end_length_per_link + 1e-8)) - isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, &(nondimensional_end_to_end_length_per_link - 1e-8)))/2e-8;
    let gamma_hat = inverse_newton_raphson_powered(nondimensional_force, f, fp, &0.9999, &1e-5, &100, 2);
    if !(0.0..=1.0).contains(&gamma_hat)
    {
        panic!("Root finding failed!");
    }
    let scale = (*number_of_links as f64)*nondimensional_force*gamma_hat - isometric_nondimensional_relative_helmholtz_free_energy(nondimensional_persistance_length, &gamma_hat);
    let integrand_denominator = |nondimensional_end_to_end_length_per_link: &f64|
    {
        let beta_delta_psi = isometric_nondimensional_relative_helmholtz_free_energy(nondimensional_persistance_length, nondimensional_end_to_end_length_per_link);
        let beta_f_xi = (*number_of_links as f64)*nondimensional_force*nondimensional_end_to_end_length_per_link;
        ((beta_f_xi - scale - beta_delta_psi).exp() - (-beta_f_xi - scale - beta_delta_psi).exp())*nondimensional_end_to_end_length_per_link/nondimensional_force
    };
    let integrand_numerator = |nondimensional_end_to_end_length_per_link: &f64|
    {
        let beta_delta_psi = isometric_nondimensional_relative_helmholtz_free_energy(nondimensional_persistance_length, nondimensional_end_to_end_length_per_link);
        let beta_f_xi = (*number_of_links as f64)*nondimensional_force*nondimensional_end_to_end_length_per_link;
        let exp_1 = (beta_f_xi - scale - beta_delta_psi).exp();
        let exp_2 = (-beta_f_xi - scale - beta_delta_psi).exp();
        ((exp_1 + exp_2)*(*number_of_links as f64)*nondimensional_end_to_end_length_per_link - (exp_1 - exp_2)/nondimensional_force)*nondimensional_end_to_end_length_per_link/nondimensional_force
    };
    integrate_1d(&integrand_numerator, &ZERO, &ONE, &POINTS)/integrate_1d(&integrand_denominator, &ZERO, &ONE, &POINTS)
}

/// The expected nondimensional end-to-end length per link as a function of the applied nondimensional force, parameterized by the number of links and nondimensional persistance length.
pub fn nondimensional_end_to_end_length_per_link(number_of_links: &u8, nondimensional_persistance_length: &f64, nondimensional_force: &f64) -> f64
{
    nondimensional_end_to_end_length(number_of_links, nondimensional_persistance_length, nondimensional_force)/(*number_of_links as f64)
}

/// The Gibbs free energy as a function of the applied force and temperature, parameterized by the number of links, link length, hinge mass, and persistance length.
pub fn gibbs_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    nondimensional_gibbs_free_energy(number_of_links, link_length, hinge_mass, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature), temperature)*BOLTZMANN_CONSTANT*temperature
}

/// The Gibbs free energy per link as a function of the applied force and temperature, parameterized by the number of links, link length, hinge mass, and persistance length.
pub fn gibbs_free_energy_per_link(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    nondimensional_gibbs_free_energy_per_link(number_of_links, link_length, hinge_mass, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature), temperature)*BOLTZMANN_CONSTANT*temperature
}

/// The relative Gibbs free energy as a function of the applied force and temperature, parameterized by the number of links, link length, and persistance length.
pub fn relative_gibbs_free_energy(number_of_links: &u8, link_length: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    nondimensional_relative_gibbs_free_energy(number_of_links, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature))*BOLTZMANN_CONSTANT*temperature
}

/// The relative Gibbs free energy per link as a function of the applied force and temperature, parameterized by the number of links, link length, and persistance length.
pub fn relative_gibbs_free_energy_per_link(number_of_links: &u8, link_length: &f64, persistance_length: &f64, force: &f64, temperature: &f64) -> f64
{
    nondimensional_relative_gibbs_free_energy_per_link(number_of_links, &(persistance_length/((*number_of_links as f64)*link_length)), &(force*link_length/BOLTZMANN_CONSTANT/temperature))*BOLTZMANN_CONSTANT*temperature
}

/// The nondimensional Gibbs free energy as a function of the applied nondimensional force and temperature, parameterized by the number of links, link length, hinge mass, and nondimensional persistance length.
pub fn nondimensional_gibbs_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, nondimensional_persistance_length: &f64, nondimensional_force: &f64, temperature: &f64) -> f64
{
    let f = &|nondimensional_end_to_end_length_per_link: &f64| isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, nondimensional_end_to_end_length_per_link);
    let fp = &|nondimensional_end_to_end_length_per_link: &f64| (isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, &(nondimensional_end_to_end_length_per_link + 1e-8)) - isometric_nondimensional_force(number_of_links, nondimensional_persistance_length, &(nondimensional_end_to_end_length_per_link - 1e-8)))/2e-8;
    let fpp = &|x: &f64| (fp(&(x + 1e-8)) - fp(&(x - 1e-8)))/2e-8;
    let gamma_hat = inverse_newton_raphson_powered(nondimensional_force, f, fp, &0.9999, &1e-5, &100, 2);
    if !(0.0..=1.0).contains(&gamma_hat)
    {
        panic!("Root finding failed!");
    }
    let scale = (*number_of_links as f64)*nondimensional_force*gamma_hat - isometric_nondimensional_helmholtz_free_energy(number_of_links, link_length, hinge_mass, nondimensional_persistance_length, &gamma_hat, temperature);
    let log_integral = if nondimensional_force > &100.0
    {
        -((8.0*PI.powi(2)/fpp(&gamma_hat)).sqrt()).ln() - (0.5*(*number_of_links as f64)*gamma_hat/nondimensional_force).ln()
    }
    else
    {
        let integrand = |nondimensional_end_to_end_length_per_link: &f64|
        {
            let beta_psi = isometric_nondimensional_helmholtz_free_energy(number_of_links, link_length, hinge_mass, nondimensional_persistance_length, nondimensional_end_to_end_length_per_link, temperature);
            let beta_f_xi = (*number_of_links as f64)*nondimensional_force*nondimensional_end_to_end_length_per_link;
            0.5*((beta_f_xi - scale - beta_psi).exp() - (-beta_f_xi - scale - beta_psi).exp())*(*number_of_links as f64)*nondimensional_end_to_end_length_per_link/nondimensional_force
        };
        -(4.0*PI*integrate_1d(&integrand, &ZERO, &ONE, &POINTS)).ln()
    };
    log_integral - scale - (4.0*(-1.0/nondimensional_persistance_length).exp().acos().sin()*PI.powi(2)*hinge_mass*link_length.powi(2)*BOLTZMANN_CONSTANT*temperature/PLANCK_CONSTANT.powi(2)).ln()
}

/// The nondimensional Gibbs free energy per link as a function of the applied nondimensional force and temperature, parameterized by the number of links, link length, and hinge mass, and nondimensional persistance length.
pub fn nondimensional_gibbs_free_energy_per_link(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, nondimensional_persistance_length: &f64, nondimensional_force: &f64, temperature: &f64) -> f64
{
    nondimensional_gibbs_free_energy(number_of_links, link_length, hinge_mass, nondimensional_persistance_length, nondimensional_force, temperature)/(*number_of_links as f64)
}

/// The nondimensional relative Gibbs free energy as a function of the applied nondimensional force, parameterized by the number of links and nondimensional persistance length.
pub fn nondimensional_relative_gibbs_free_energy(number_of_links: &u8, nondimensional_persistance_length: &f64, nondimensional_force: &f64) -> f64
{
    nondimensional_gibbs_free_energy(number_of_links, &1.0, &1.0, nondimensional_persistance_length, nondimensional_force, &300.0) - nondimensional_gibbs_free_energy(number_of_links, &1.0, &1.0, nondimensional_persistance_length, &ZERO, &300.0)
}

/// The nondimensional relative Gibbs free energy per link as a function of the applied nondimensional force, parameterized by the number of links and nondimensional persistance length.
pub fn nondimensional_relative_gibbs_free_energy_per_link(number_of_links: &u8, nondimensional_persistance_length: &f64, nondimensional_force: &f64) -> f64
{
    nondimensional_gibbs_free_energy_per_link(number_of_links, &1.0, &1.0, nondimensional_persistance_length, nondimensional_force, &300.0) - nondimensional_gibbs_free_energy_per_link(number_of_links, &1.0, &1.0, nondimensional_persistance_length, &ZERO, &300.0)
}

/// The implemented functionality of the thermodynamics of the WLC model in the isotensional ensemble.
impl WLC
{
    /// Initializes and returns an instance of the thermodynamics of the WLC model in the isotensional ensemble.
    pub fn init(number_of_links: u8, link_length: f64, hinge_mass: f64, persistance_length: f64) -> Self
    {
        WLC
        {
            hinge_mass,
            link_length,
            number_of_links,
            persistance_length,
            nondimensional_persistance_length: persistance_length/(number_of_links as f64)/link_length,
            legendre: self::legendre::WLC::init(number_of_links, link_length, hinge_mass, persistance_length)
        }
    }
    /// The expected end-to-end length as a function of the applied force and temperature.
    pub fn end_to_end_length(&self, force: &f64, temperature: &f64) -> f64
    {
        end_to_end_length(&self.number_of_links, &self.link_length, &self.persistance_length, force, temperature)
    }
    /// The expected end-to-end length per link as a function of the applied force and temperature.
    pub fn end_to_end_length_per_link(&self, force: &f64, temperature: &f64) -> f64
    {
        end_to_end_length_per_link(&self.number_of_links, &self.link_length, &self.persistance_length, force, temperature)
    }
    /// The expected nondimensional end-to-end length as a function of the applied nondimensional force.
    pub fn nondimensional_end_to_end_length(&self, nondimensional_force: &f64) -> f64
    {
        nondimensional_end_to_end_length(&self.number_of_links, &self.nondimensional_persistance_length, nondimensional_force)
    }
    /// The expected nondimensional end-to-end length per link as a function of the applied nondimensional force.
    pub fn nondimensional_end_to_end_length_per_link(&self, nondimensional_force: &f64) -> f64
    {
        nondimensional_end_to_end_length_per_link(&self.number_of_links, &self.nondimensional_persistance_length, nondimensional_force)
    }
    /// The Gibbs free energy as a function of the applied force and temperature.
    pub fn gibbs_free_energy(&self, force: &f64, temperature: &f64) -> f64
    {
        gibbs_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.persistance_length, force, temperature)
    }
    /// The Gibbs free energy per link as a function of the applied force and temperature.
    pub fn gibbs_free_energy_per_link(&self, force: &f64, temperature: &f64) -> f64
    {
        gibbs_free_energy_per_link(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.persistance_length, force, temperature)
    }
    /// The relative Gibbs free energy as a function of the applied force and temperature.
    pub fn relative_gibbs_free_energy(&self, force: &f64, temperature: &f64) -> f64
    {
        relative_gibbs_free_energy(&self.number_of_links, &self.link_length, &self.persistance_length, force, temperature)
    }
    /// The relative Gibbs free energy per link as a function of the applied force and temperature.
    pub fn relative_gibbs_free_energy_per_link(&self, force: &f64, temperature: &f64) -> f64
    {
        relative_gibbs_free_energy_per_link(&self.number_of_links, &self.link_length, &self.persistance_length, force, temperature)
    }
    /// The nondimensional Gibbs free energy as a function of the applied nondimensional force and temperature.
    pub fn nondimensional_gibbs_free_energy(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_gibbs_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.nondimensional_persistance_length, nondimensional_force, temperature)
    }
    /// The nondimensional Gibbs free energy per link as a function of the applied nondimensional force and temperature.
    pub fn nondimensional_gibbs_free_energy_per_link(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_gibbs_free_energy_per_link(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.nondimensional_persistance_length, nondimensional_force, temperature)
    }
    /// The nondimensional relative Gibbs free energy as a function of the applied nondimensional force.
    pub fn nondimensional_relative_gibbs_free_energy(&self, nondimensional_force: &f64) -> f64
    {
        nondimensional_relative_gibbs_free_energy(&self.number_of_links, &self.nondimensional_persistance_length, nondimensional_force)
    }
    /// The nondimensional relative Gibbs free energy per link as a function of the applied nondimensional force.
    pub fn nondimensional_relative_gibbs_free_energy_per_link(&self, nondimensional_force: &f64) -> f64
    {
        nondimensional_relative_gibbs_free_energy_per_link(&self.number_of_links, &self.nondimensional_persistance_length, nondimensional_force)
    }
}