1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#[cfg(feature = "extern")]
pub mod ex;

#[cfg(feature = "python")]
pub mod py;

mod test;

use super::erf;
use std::f64::consts::PI;
use crate::physics::
{
    PLANCK_CONSTANT,
    BOLTZMANN_CONSTANT,
    single_chain::ZERO
};

/// The structure of the thermodynamics of the EFJC model in the isotensional ensemble approximated using a Legendre transformation.
pub struct EFJC
{
    /// The mass of each hinge in the chain in units of kg/mol.
    pub hinge_mass: f64,

    /// The length of each link in the chain in units of nm.
    pub link_length: f64,

    /// The number of links in the chain.
    pub number_of_links: u8,

    /// The stiffness of each link in the chain in units of J/(molâ‹…nm^2).
    pub link_stiffness: f64
}

/// The Helmholtz free energy as a function of the applied force and temperature, parameterized by the number of links, link length, hinge mass, and link stiffness.
pub fn helmholtz_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, link_stiffness: &f64, force: &f64, temperature: &f64) -> f64
{
    BOLTZMANN_CONSTANT*temperature*nondimensional_helmholtz_free_energy(number_of_links, link_length, hinge_mass, &(link_stiffness*link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), &(force/BOLTZMANN_CONSTANT/temperature*link_length), temperature)
}

/// The Helmholtz free energy per link as a function of the applied force and temperature, parameterized by the link length, hinge mass, and link stiffness.
pub fn helmholtz_free_energy_per_link(link_length: &f64, hinge_mass: &f64, link_stiffness: &f64, force: &f64, temperature: &f64) -> f64
{
    BOLTZMANN_CONSTANT*temperature*nondimensional_helmholtz_free_energy_per_link(link_length, hinge_mass, &(link_stiffness*link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), &(force/BOLTZMANN_CONSTANT/temperature*link_length), temperature)
}

/// The relative Helmholtz free energy as a function of the applied force and temperature, parameterized by the number of links, link length, and link stiffness.
pub fn relative_helmholtz_free_energy(number_of_links: &u8, link_length: &f64, link_stiffness: &f64, force: &f64, temperature: &f64) -> f64
{
    helmholtz_free_energy(number_of_links, link_length, &1.0, link_stiffness, force, temperature) - helmholtz_free_energy(number_of_links, link_length, &1.0, link_stiffness, &(ZERO*BOLTZMANN_CONSTANT*temperature/link_length), temperature)
}

/// The relative Helmholtz free energy per link as a function of the applied force and temperature, parameterized by the link length and link stiffness.
pub fn relative_helmholtz_free_energy_per_link(link_length: &f64, link_stiffness: &f64, force: &f64, temperature: &f64) -> f64
{
    helmholtz_free_energy_per_link(link_length, &1.0, link_stiffness, force, temperature) - helmholtz_free_energy_per_link(link_length, &1.0, link_stiffness, &(ZERO*BOLTZMANN_CONSTANT*temperature/link_length), temperature)
}

/// The nondimensional Helmholtz free energy as a function of the applied nondimensional force and temperature, parameterized by the number of links, link length, hinge mass, and nondimensional link stiffness.
pub fn nondimensional_helmholtz_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, nondimensional_link_stiffness: &f64, nondimensional_force: &f64, temperature: &f64) -> f64
{
    (*number_of_links as f64)*nondimensional_helmholtz_free_energy_per_link(link_length, hinge_mass, nondimensional_link_stiffness, nondimensional_force, temperature)
}

/// The nondimensional Helmholtz free energy per link as a function of the applied nondimensional force and temperature, parameterized by the link length, hinge mass, and nondimensional link stiffness.
pub fn nondimensional_helmholtz_free_energy_per_link(link_length: &f64, hinge_mass: &f64, nondimensional_link_stiffness: &f64, nondimensional_force: &f64, temperature: &f64) -> f64
{
    let denominator = 4.0*nondimensional_force.sinh()*(1.0 + nondimensional_force/nondimensional_force.tanh()/nondimensional_link_stiffness);
    let fraction = ((nondimensional_force/nondimensional_link_stiffness + 1.0)*nondimensional_force.exp()*erf(&((nondimensional_force + nondimensional_link_stiffness)/(2.0*nondimensional_link_stiffness).sqrt())) - (nondimensional_force/nondimensional_link_stiffness - 1.0)/nondimensional_force.exp()*erf(&((nondimensional_force - nondimensional_link_stiffness)/(2.0*nondimensional_link_stiffness).sqrt())))/denominator;
    -(nondimensional_force.sinh()/nondimensional_force).ln() - 0.5*nondimensional_force.powi(2)/nondimensional_link_stiffness - (1.0 + nondimensional_force/nondimensional_force.tanh()/nondimensional_link_stiffness).ln() - (0.5 + ((nondimensional_force/nondimensional_link_stiffness + 1.0)*nondimensional_force.exp()*erf(&((nondimensional_force + nondimensional_link_stiffness)/(2.0*nondimensional_link_stiffness).sqrt())) - (nondimensional_force/nondimensional_link_stiffness - 1.0)/nondimensional_force.exp()*erf(&((nondimensional_force - nondimensional_link_stiffness)/(2.0*nondimensional_link_stiffness).sqrt())))/(4.0*nondimensional_force.sinh()*(1.0 + nondimensional_force/nondimensional_force.tanh()/nondimensional_link_stiffness))).ln() - 0.5*(2.0*PI*link_length.powi(2)/nondimensional_link_stiffness).ln() - (8.0*PI.powi(2)*hinge_mass*link_length.powi(2)*BOLTZMANN_CONSTANT*temperature/PLANCK_CONSTANT.powi(2)).ln() + nondimensional_force*(1.0/nondimensional_force.tanh() - 1.0/nondimensional_force + nondimensional_force/nondimensional_link_stiffness*(1.0 + (nondimensional_force.tanh() - 1.0/nondimensional_force.tanh() + 1.0/nondimensional_force)/(nondimensional_force.tanh() + nondimensional_force/nondimensional_link_stiffness)) + (nondimensional_force.exp()*((2.0/PI/nondimensional_link_stiffness).sqrt()*(nondimensional_force/nondimensional_link_stiffness + 1.0)*(-(nondimensional_force + nondimensional_link_stiffness).powi(2)/2.0/nondimensional_link_stiffness).exp() + (1.0 + (1.0 + nondimensional_force)/nondimensional_link_stiffness)) - 1.0/nondimensional_force.exp()*((2.0/PI/nondimensional_link_stiffness).sqrt()*(nondimensional_force/nondimensional_link_stiffness - 1.0)*(-(nondimensional_force - nondimensional_link_stiffness).powi(2)/2.0/nondimensional_link_stiffness).exp() + (1.0 + (1.0 - nondimensional_force)/nondimensional_link_stiffness)*erf(&((nondimensional_force - nondimensional_link_stiffness)/(2.0*nondimensional_link_stiffness).sqrt()))) - fraction*(4.0*(nondimensional_force.cosh()*(1.0 + (1.0 + nondimensional_force/nondimensional_force.tanh())/nondimensional_link_stiffness) - nondimensional_force/nondimensional_link_stiffness/nondimensional_force.sinh())))/denominator/(1.0 + fraction))
}

/// The nondimensional relative Helmholtz free energy as a function of the applied nondimensional force, parameterized by the number of links and nondimensional link stiffness.
pub fn nondimensional_relative_helmholtz_free_energy(number_of_links: &u8, nondimensional_link_stiffness: &f64, nondimensional_force: &f64) -> f64
{
    nondimensional_helmholtz_free_energy(number_of_links, &1.0, &1.0, nondimensional_link_stiffness, nondimensional_force, &300.0) - nondimensional_helmholtz_free_energy(number_of_links, &1.0, &1.0, nondimensional_link_stiffness, &ZERO, &300.0)
}

/// The nondimensional relative Helmholtz free energy per link as a function of the applied nondimensional force, parameterized by the nondimensional link stiffness.
pub fn nondimensional_relative_helmholtz_free_energy_per_link(nondimensional_link_stiffness: &f64, nondimensional_force: &f64) -> f64
{
    nondimensional_helmholtz_free_energy_per_link(&1.0, &1.0, nondimensional_link_stiffness, nondimensional_force, &300.0) - nondimensional_helmholtz_free_energy_per_link(&1.0, &1.0, nondimensional_link_stiffness, &ZERO, &300.0)
}

/// The implemented functionality of the thermodynamics of the EFJC model in the isotensional ensemble approximated using a Legendre transformation.
impl EFJC
{
    /// Initializes and returns an instance of the thermodynamics of the EFJC model in the isotensional ensemble approximated using a Legendre transformation.
    pub fn init(number_of_links: u8, link_length: f64, hinge_mass: f64, link_stiffness: f64) -> Self
    {
        EFJC
        {
            hinge_mass,
            link_length,
            number_of_links,
            link_stiffness
        }
    }
    /// The Helmholtz free energy as a function of the applied force and temperature.
    pub fn helmholtz_free_energy(&self, force: &f64, temperature: &f64) -> f64
    {
        helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.link_stiffness, force, temperature)
    }
    /// The Helmholtz free energy per link as a function of the applied force and temperature.
    pub fn helmholtz_free_energy_per_link(&self, force: &f64, temperature: &f64) -> f64
    {
        helmholtz_free_energy_per_link(&self.link_length, &self.hinge_mass, &self.link_stiffness, force, temperature)
    }
    /// The relative Helmholtz free energy as a function of the applied force and temperature.
    pub fn relative_helmholtz_free_energy(&self, force: &f64, temperature: &f64) -> f64
    {
        relative_helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.link_stiffness, force, temperature)
    }
    /// The relative Helmholtz free energy per link as a function of the applied force and temperature.
    pub fn relative_helmholtz_free_energy_per_link(&self, force: &f64, temperature: &f64) -> f64
    {
        relative_helmholtz_free_energy_per_link(&self.link_length, &self.link_stiffness, force, temperature)
    }
    /// The nondimensional Helmholtz free energy as a function of the applied nondimensional force and temperature.
    pub fn nondimensional_helmholtz_free_energy(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_force, temperature)
    }
    /// The nondimensional Helmholtz free energy per link as a function of the applied nondimensional force and temperature.
    pub fn nondimensional_helmholtz_free_energy_per_link(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_helmholtz_free_energy_per_link(&self.link_length, &self.hinge_mass, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_force, temperature)
    }
    /// The nondimensional relative Helmholtz free energy as a function of the applied nondimensional force.
    pub fn nondimensional_relative_helmholtz_free_energy(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_relative_helmholtz_free_energy(&self.number_of_links, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_force)
    }
    /// The nondimensional relative Helmholtz free energy per link as a function of the applied nondimensional force.
    pub fn nondimensional_relative_helmholtz_free_energy_per_link(&self, nondimensional_force: &f64, temperature: &f64) -> f64
    {
        nondimensional_relative_helmholtz_free_energy_per_link(&(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_force)
    }
}