1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#[cfg(feature = "extern")]
pub mod ex;

#[cfg(feature = "python")]
pub mod py;

mod test;

use std::f64::consts::PI;
use crate::math::
{
    inverse_langevin,
    inverse_newton_raphson
};
use crate::physics::
{
    PLANCK_CONSTANT,
    BOLTZMANN_CONSTANT,
    single_chain::ZERO
};

/// The extensible freely-jointed chain (EFJC) model thermodynamics in the isometric ensemble approximated using an asymptotic approach and a Legendre transformation.
pub struct EFJC
{
    /// The mass of each hinge in the chain in units of kg/mol.
    pub hinge_mass: f64,

    /// The length of each link in the chain in units of nm.
    pub link_length: f64,

    /// The number of links in the chain.
    pub number_of_links: u8,

    /// The stiffness of each link in the chain in units of J/(molâ‹…nm^2).
    pub link_stiffness: f64
}

/// The expected force as a function of the applied end-to-end length and temperature, parameterized by the number of links, link length, and link stiffness.
pub fn force(number_of_links: &u8, link_length: &f64, link_stiffness: &f64, end_to_end_length: &f64, temperature: &f64) -> f64
{
    BOLTZMANN_CONSTANT*temperature/link_length*nondimensional_force(&(link_stiffness*link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), &(end_to_end_length/((*number_of_links as f64)*link_length)))
}

/// The expected nondimensional force as a function of the applied nondimensional end-to-end length per link, parameterized by the nondimensional link stiffness.
pub fn nondimensional_force(nondimensional_link_stiffness: &f64, nondimensional_end_to_end_length_per_link: &f64) -> f64
{
    let guess: f64 = if nondimensional_end_to_end_length_per_link < &1.0
    {
        inverse_langevin(nondimensional_end_to_end_length_per_link)
    }
    else
    {
        nondimensional_link_stiffness*(nondimensional_end_to_end_length_per_link - 1.0)
    };
    inverse_newton_raphson(nondimensional_end_to_end_length_per_link, &|nondimensional_force: &f64| 1.0/nondimensional_force.tanh() - 1.0/nondimensional_force + nondimensional_force/nondimensional_link_stiffness*(1.0 + (nondimensional_force.tanh() - 1.0/nondimensional_force.tanh() + 1.0/nondimensional_force)/(nondimensional_force.tanh() + nondimensional_force/nondimensional_link_stiffness)), &|nondimensional_force: &f64| 1.0/nondimensional_force.powi(2) - 1.0/nondimensional_force.sinh().powi(2) + (nondimensional_link_stiffness*nondimensional_force.powi(2)/nondimensional_force.sinh().powi(4) - (2.0*nondimensional_link_stiffness + 1.0)*(nondimensional_link_stiffness - nondimensional_force.powi(2))/nondimensional_force.sinh().powi(2) + 2.0*nondimensional_link_stiffness*nondimensional_force/nondimensional_force.tanh()*(nondimensional_link_stiffness/nondimensional_force.sinh().powi(2) + 1.0) + (nondimensional_link_stiffness - 1.0)*nondimensional_link_stiffness + nondimensional_force.powi(2))/(nondimensional_link_stiffness + nondimensional_force/nondimensional_force.tanh()).powi(2)/nondimensional_link_stiffness, &guess, &1e-6, &100)
}

/// The Helmholtz free energy as a function of the applied end-to-end length and temperature, parameterized by the number of links, link length, hinge mass, and link stiffness.
pub fn helmholtz_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, link_stiffness: &f64, end_to_end_length: &f64, temperature: &f64) -> f64
{
    BOLTZMANN_CONSTANT*temperature*nondimensional_helmholtz_free_energy(number_of_links, link_length, hinge_mass, &(link_stiffness*link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), &(end_to_end_length/(*number_of_links as f64)/link_length), temperature)
}

/// The Helmholtz free energy per link as a function of the applied end-to-end length and temperature, parameterized by the number of links, link length, hinge mass, and link stiffness.
pub fn helmholtz_free_energy_per_link(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, link_stiffness: &f64, end_to_end_length: &f64, temperature: &f64) -> f64
{
    BOLTZMANN_CONSTANT*temperature*nondimensional_helmholtz_free_energy_per_link(number_of_links, link_length, hinge_mass, &(link_stiffness*link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), &(end_to_end_length/(*number_of_links as f64)/link_length), temperature)
}

/// The relative Helmholtz free energy as a function of the applied end-to-end length and temperature, parameterized by the number of links, link length, and link stiffness.
pub fn relative_helmholtz_free_energy(number_of_links: &u8, link_length: &f64, link_stiffness: &f64, end_to_end_length: &f64, temperature: &f64) -> f64
{
    helmholtz_free_energy(number_of_links, link_length, &1.0, link_stiffness, end_to_end_length, temperature) - helmholtz_free_energy(number_of_links, link_length, &1.0, link_stiffness, &(ZERO*(*number_of_links as f64)*link_length), temperature)
}

/// The relative Helmholtz free energy per link as a function of the applied end-to-end length and temperature, parameterized by the number of links, link length, and link stiffness.
pub fn relative_helmholtz_free_energy_per_link(number_of_links: &u8, link_length: &f64, link_stiffness: &f64, end_to_end_length: &f64, temperature: &f64) -> f64
{
    helmholtz_free_energy_per_link(number_of_links, link_length, &1.0, link_stiffness, end_to_end_length, temperature) - helmholtz_free_energy_per_link(number_of_links, link_length, &1.0, link_stiffness, &(ZERO*(*number_of_links as f64)*link_length), temperature)
}

/// The nondimensional Helmholtz free energy as a function of the applied nondimensional end-to-end length per link and temperature, parameterized by the number of links, link length, hinge mass, and nondimensional link stiffness.
pub fn nondimensional_helmholtz_free_energy(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, nondimensional_link_stiffness: &f64, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
{
    (*number_of_links as f64)*nondimensional_helmholtz_free_energy_per_link(number_of_links, link_length, hinge_mass, nondimensional_link_stiffness, nondimensional_end_to_end_length_per_link, temperature)
}

/// The nondimensional Helmholtz free energy per link as a function of the nondimensional end-to-end length per link and temperature, parameterized by the number of links, link length, hinge mass, and nondimensional link stiffness.
pub fn nondimensional_helmholtz_free_energy_per_link(number_of_links: &u8, link_length: &f64, hinge_mass: &f64, nondimensional_link_stiffness: &f64, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
{
    let nondimensional_force = nondimensional_force(nondimensional_link_stiffness, nondimensional_end_to_end_length_per_link);
    -(nondimensional_force.sinh()/nondimensional_force).ln() - 0.5*nondimensional_force.powi(2)/nondimensional_link_stiffness - (1.0 + nondimensional_force/nondimensional_force.tanh()/nondimensional_link_stiffness).ln() + nondimensional_force*nondimensional_end_to_end_length_per_link - (1.0 - 1.0/(*number_of_links as f64))*(0.5*(2.0*PI*link_length.powi(2)/nondimensional_link_stiffness).ln() + (8.0*PI.powi(2)*hinge_mass*link_length.powi(2)*BOLTZMANN_CONSTANT*temperature/PLANCK_CONSTANT.powi(2)).ln())
}

/// The nondimensional relative Helmholtz free energy as a function of the nondimensional end-to-end length per link, parameterized by the number of links and nondimensional link stiffness.
pub fn nondimensional_relative_helmholtz_free_energy(number_of_links: &u8, nondimensional_link_stiffness: &f64, nondimensional_end_to_end_length_per_link: &f64) -> f64
{
    nondimensional_helmholtz_free_energy(number_of_links, &1.0, &1.0, nondimensional_link_stiffness, nondimensional_end_to_end_length_per_link, &300.0) - nondimensional_helmholtz_free_energy(number_of_links, &1.0, &1.0, nondimensional_link_stiffness, &ZERO, &300.0)
}

/// The nondimensional relative Helmholtz free energy per link as a function of the nondimensional end-to-end length per link, parameterized by the nondimensional link stiffness.
pub fn nondimensional_relative_helmholtz_free_energy_per_link(nondimensional_link_stiffness: &f64, nondimensional_end_to_end_length_per_link: &f64) -> f64
{
    nondimensional_helmholtz_free_energy_per_link(&8, &1.0, &1.0, nondimensional_link_stiffness, nondimensional_end_to_end_length_per_link, &300.0) - nondimensional_helmholtz_free_energy_per_link(&8, &1.0, &1.0, nondimensional_link_stiffness, &ZERO, &300.0)
}

/// The implemented functionality of the thermodynamics of the EFJC model in the isometric ensemble approximated using an asymptotic approach and a Legendre transformation.
impl EFJC
{
    /// Initializes and returns an instance of the thermodynamics of the EFJC model in the isometric ensemble approximated using an asymptotic approach and a Legendre transformation.
    pub fn init(number_of_links: u8, link_length: f64, hinge_mass: f64, link_stiffness: f64) -> Self
    {
        EFJC
        {
            hinge_mass,
            link_length,
            number_of_links,
            link_stiffness
        }
    }
    /// The expected force as a function of the applied end-to-end length and temperature.
    pub fn force(&self, end_to_end_length: &f64, temperature: &f64) -> f64
    {
        force(&self.number_of_links, &self.link_length, &self.link_stiffness, end_to_end_length, temperature)
    }
    /// The expected nondimensional force as a function of the applied nondimensional end-to-end length per link and temperature.
    pub fn nondimensional_force(&self, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
    {
        nondimensional_force(&(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_end_to_end_length_per_link)
    }
    /// The Helmholtz free energy as a function of the applied end-to-end length and temperature.
    pub fn helmholtz_free_energy(&self, end_to_end_length: &f64, temperature: &f64) -> f64
    {
        helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.link_stiffness, end_to_end_length, temperature)
    }
    /// The Helmholtz free energy per link as a function of the applied end-to-end length and temperature.
    pub fn helmholtz_free_energy_per_link(&self, end_to_end_length: &f64, temperature: &f64) -> f64
    {
        helmholtz_free_energy_per_link(&self.number_of_links, &self.link_length, &self.hinge_mass, &self.link_stiffness, end_to_end_length, temperature)
    }
    /// The relative Helmholtz free energy as a function of the applied end-to-end length and temperature.
    pub fn relative_helmholtz_free_energy(&self, end_to_end_length: &f64, temperature: &f64) -> f64
    {
        relative_helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.link_stiffness, end_to_end_length, temperature)
    }
    /// The relative Helmholtz free energy per link as a function of the applied end-to-end length and temperature.
    pub fn relative_helmholtz_free_energy_per_link(&self, end_to_end_length: &f64, temperature: &f64) -> f64
    {
        relative_helmholtz_free_energy_per_link(&self.number_of_links, &self.link_length, &self.link_stiffness, end_to_end_length, temperature)
    }
    /// The nondimensional Helmholtz free energy as a function of the applied nondimensional end-to-end length per link and temperature.
    pub fn nondimensional_helmholtz_free_energy(&self, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
    {
        nondimensional_helmholtz_free_energy(&self.number_of_links, &self.link_length, &self.hinge_mass, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_end_to_end_length_per_link, temperature)
    }
    /// The nondimensional Helmholtz free energy per link as a function of the applied nondimensional end-to-end length per link and temperature.
    pub fn nondimensional_helmholtz_free_energy_per_link(&self, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
    {
        nondimensional_helmholtz_free_energy_per_link(&self.number_of_links, &self.link_length, &self.hinge_mass, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_end_to_end_length_per_link, temperature)
    }
    /// The nondimensional relative Helmholtz free energy as a function of the applied nondimensional end-to-end length per link.
    pub fn nondimensional_relative_helmholtz_free_energy(&self, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
    {
        nondimensional_relative_helmholtz_free_energy(&self.number_of_links, &(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_end_to_end_length_per_link)
    }
    /// The nondimensional relative Helmholtz free energy per link as a function of the applied nondimensional end-to-end length per link.
    pub fn nondimensional_relative_helmholtz_free_energy_per_link(&self, nondimensional_end_to_end_length_per_link: &f64, temperature: &f64) -> f64
    {
        nondimensional_relative_helmholtz_free_energy_per_link(&(self.link_stiffness*self.link_length.powi(2)/BOLTZMANN_CONSTANT/temperature), nondimensional_end_to_end_length_per_link)
    }
}