

Paracousti User Manual
December 2018

2

CONTACTS
Leiph A. Preston

Geophysics
Sandia National Laboratories

P.O. Box 5800
Albuquerque, New Mexico 87185-MS0750

Erin Hafla

Montana State University
P.O. Box 173800

Bozeman, Montana 59717-3800

Erick Johnson
Mechanical Engineering
Montana State University

P.O. Box 173800
Bozeman, Montana 59717-3800

ACKNOWLEDGMENTS

This	work	was	sponsored	by	Sandia	National	Laboratories	Water	Power	Technology	department	and	by	the	
Department	of	Energies	Wind	and	Water	Power	Technologies	Office.	Sandia	National	Laboratories	is	a	multi-
mission	laboratory	managed	and	operated	by	National	Technology	and	Engineering	Solutions	of	Sandia,	LLC,	
a	wholly	owned	subsidiary	of	Honeywell	International,	Inc.,	for	the	U.S.	Department	of	Energy’s	National	

Nuclear	Security	Administration	under	Contract	No.	DE-	NA0003525.

3

CONTENTS

1. INTRODUCTION .. 7

2. INSTALLATION ... 8

2.1. SOFTWARE ENVIRONMENT AND SETUP ... 8
2.2. PRE-COMPILED EXECUTABLE .. 8
2.3. COMPILING THE EXECUTABLE ... 8

3. CREATING A PARACOUSTI SIMULATION .. 9

3.1. THE EARTH MODEL .. 11
3.2. BOUNDARY CONDITIONS .. 14
3.3. SOUND SOURCES .. 15
3.4. RECEIVER DATA .. 17
3.4.1. TRACE – TIME HISTORY AT A SINGLE OR ARRAY OF POINTS .. 17
3.4.2. SLICE – A PLANAR SNAPSHOT AT AN INSTANT IN TIME ... 19
3.4.3. VOLUMETRIC – A SNAPSHOT OF THE ENTIRE WAVEFIELD AT AN INSTANT IN TIME 20
3.5. ATTENUATION ... 20

4. RUNNING PARACOUSTI ... 23

4.1. ADDITIONAL COMMAND-LINE PARAMETERS ... 23

5. POST-PROCESSING RESULTS ... 25

6. EXAMPLES .. 26

6.1. EXAMPLE 1 .. 26
6.2. EXAMPLE 2 .. 26

7. THEORY ... 28

7.1. SOLUTION EQUATIONS ... 28
7.2. SOLUTION METHODOLOGY .. 29

8. CONCLUSIONS ... 34

9. REFERENCES ... 35

10. APPENDIX I: LIST OF COMMANDS ... 36

10.1. COMMANDS: .. 36

4

5

LIST OF FIGURES

Figure 1: General depiction of the acoustic wave propagation modeling process. 9
Figure 2: The computational domain (large box) represented by a 3-D uniformly spaced grid with
nodes (grid points) indicated by black dots. ... 29
Figure 3: Arrangement of dependent variables and medium parameters for one cell of the standard
staggered grid. ... 30

6

NOMENCLATURE

ABC Absorbing Boundary Condition
CPML Convolution Perfectly Matched Layer
DOE Department of Energy
MHK Marine Hydrokinetic
MPML Multi-axial Perfectly Matched Layer
PML Perfectly Matched Layer
SNL Sandia National Laboratories
TDAAPS Time Domain Atmospheric Acoustic Propagation Suite

7

1. Introduction

Paracousti is a parallelized acoustic wave propagation simulation package developed at Sandia
National Laboratories and Montana State University. It solves the linearized coupled set of
acousto-dynamic partial differential equations, a pair of velocity and pressure equations, using
finite-difference approximations that are second order accurate in time and fourth order accurate
in space. Paracousti simulates sound wave propagation within realistic 3-D earth, atmosphere and
hydroacoustic models, including 3-D variations in medium densities due to changes in topography
or bathymetry and acoustic sound speeds, including voids in the subsurface. A combined
discretization of both fluid and solid domains enable varying properties in all spatial coordinates
to be used, as measurements or simulation data becomes available. Sound-source profiles are
evaluated as moment tensors, allowing combinations of monopole and higher-order forces.
Although it assumes ideal fluid media, it can also simulate sound wave propagation in attenuative
media, such as would be expected from physical mechanisms like molecular dissipation. The code
assumes that the densities and sound speeds are fixed in time over the duration of a run. Paracousti
uses a massively parallel design. It can run efficiently on a signal machine or on a massively
parallel machine with thousands of cores.

Paracousti was created as an alternative solution to the Helmholtz and wave equation methods
traditionally employed to model and predict the sound propagation generated from a single or array
of Marine hydrokinetic (MHK) devices in the absence of measured sound levels. MHK devices
generate electricity from the motion of tidal and ocean currents as well as ocean waves to provide
an additional source of renewable energy available to the United States. These devices are a source
of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines and address
stakeholder concerns.

Example simulations and code presented in this manual are derived from this initial purpose. As
Paracousti may be applied to a wide variety of environments, the applications are far more
widespread. All examples in this report are presently written for MATLAB.

8

2. Installation

2.1. Software Environment and Setup
Paracousti is a collection of C, C++ and Fortran source files. As such, to compile Paracousti a
compiler capable of compiling all these languages is required. A netCDF 3+ library must also be
on your library path. MPI (openMPI) is an additional requirement for compilation and may be
downloaded online.

If you have an executable of Paracousti, then the netCDF requirement depends on whether the
netCDF library was statically linked internally to the executable. If it was bundled as a static
internal library, then the netCDF library need not be on the machine. In all cases, it is required
that standard C, C++, and Fortran libraries reside on your runtime library path. MPI is needed to
run Paracousti, even on a single machine. Paracousti must always be executed through mpirun or
mpiexec.

Paracousti should run on most Linux distributions. Paracousti_Linux has been built in Red Hat
and is routinely tested and used on Debian, under Ubuntu. All support tutorials and input files
have been written in MATLAB.

2.2. Pre-compiled executable
The current pre-compiled executable of ParAcousti_Linux was compiled with gcc 4.7.1, mpi
1.8.1, and netCDF 4.4.1.1 on 64-bit Red Hat Enterprise Linux Workstation release 6.8. This
executable requires dynamically linked openmpi and netCDF libraries.

2.3. Compiling the executable
The source-code is available at the GitHub repository. A makefile is available to build Paracousti
under a Linux distribution of your choice. Further details to be appended shortly.

9

3. Creating a Paracousti Simulation

A three-step modeling process for simulating acoustic wave propagation is depicted in general
terms in Figure 1 The numerical simulation algorithm (center box) accepts various inputs (left
column) and then calculates and outputs various data types (right column). Inputs into
Paracousti are: 1) the “earth model”, consisting of a gridded representation of the medium
parameters defined on a 3-D rectangular grid, 2) a description of the recording geometry (i.e.,
types and positions of acoustic energy sources), and 3) the desired outputs. The size of the
domain depends on the region(s) of interest and can encompass water, earth, and air domains, but
as shear waves are not included; each domain is treated as a fluid. Calculated data are of three
types: 1) traces, or time-series of particle velocities or pressure at designated receiver locations in
the 3-D grid; 2) “time slices” or 2-D pictures of time-evolving acoustic wavefields; and 3) 3-D
wavefield volumes. Visualization software (often user-specific) is needed to display these data
types.

A Paracousti simulation is defined and executed through an earth model and a series of
command-line flags. The earth model defines the spatial model boundaries, Cartesian grid used
to solve the model, and environmental properties associated with each location within the grid.
All inputs associated with the earth model are separate from any flags that define how the
problem should be solved (boundary conditions for example) and must be put together in a

Inputs

Algorithm control
parameters via command

line flags

Earth model (3-D gridded
representation of medium

parameters)

Source parameters
including type(s),

locations(s) and amplitude
variations with time

Receiver parameters
including type(s) and

location(s)

Optional wavefield initial
conditions of time varying

boundary conditions

3-D finite-difference acoustic wave
propagation algorithm

Paracousti

Trace output from
receivers

Timeslice output from 2-D
snapshots of the

wavefields

3-D wavefield volume
output

Outputs
Require visualization software

Simulation Algorithm

Figure 1: General depiction of the acoustic wave propagation modeling process.

10

program external to Paracousti, which runs only as an executable. The following are the
properties required for constructing the earth model:
• Bathymetry: Measurement of the depth of water to the bottom of the body of water. It is

required to define the individual parameter values for every grid point in the model domain as
well as the overall size of the model domain

• Density: Medium mass density as a function of space over the entire 3-D model domain;
individual values for every grid point

• Acoustic Sound Speed: Medium sound speed as a function of space over the entire 3-D model
domain; individual values for every grid point

Once the model domain is defined along with any properties associated with every grid point
location, command line flags are further used to describe any further boundary conditions,
attenuative properties, energy sources, how Paracousti should accomplish the solution process,
and required output. Data associated with flags other than those defined for output are defined
below:
• Boundary conditions: All edges of the model domain must be constrained or described by a

boundary condition. The available boundary conditions are outlined as:
• Pressure-Free Surface: The air portion of the air-water interface on the top side of the

domain is approximated as a vacuum. If this boundary condition is not used, the model
assumes an infinite water depth above the model domain.

• Convolutional Perfectly Matched Layers & Perfectly Matched Layers: These boundaries
require a buffer zone around on any domain boundary that they are applied to that is used
to dampen any unwanted reflections from reentering the model domain and negatively
affecting the simulation solution. CPMLs and PMLs have slightly different requirements
and applications dependent on the dimensions of the model domain.

• Attenuation: Additional energy dissipation may be added to the system through an attenuation
factor. Paracousti assumes that the ambient medium is ideal and attenuation values are
assumed to be zero unless otherwise stated. They may be applied individually to each grid
point or for a range of density values.

• Sound source Information: Sources are required to provide an energy source which can then
propagate through the model domain. Options for these sources are:

• Body force and/or moment tensor sources. Each source requires a location in 3-D space and
how the source amplitude varies as a function of time.

• Time dependent boundary conditions: Pressure and the three components of particle
velocity as required on a surface as a function of time. More detail is given below.

• Output type and parameters: Several types of data output are available. Depending on the data
type, different parameters are required for definition. Receiver locations are required to define
any particular location that a type of data should be located. It is worth noting that the type of
data required at the solution completion must be specified prior to running the model. Not all
output types require a specific collection point required by receivers. The three general forms
of output data are as follows:

• Trace data: These represent point receivers (like a hydrophone) in the model. They record
pressures or particle velocities at a specific location as a function of time. The 3-D location
and type of trace (pressure, x-component of velocity, etc.) are required to define a trace.
The specified location of the trace must align with the underlying Cartesian grid assigned

11

for the model. This is the only type of output data that requires a specific collection
location.

• Time slices: This output type captures pressures or velocities on a 2-D slice through the
model as a function of time. The slice plane must be aligned with the underlying Cartesian
grid assigned for the model. The type of output (e.g., pressure, etc.), the orientation of the
plane (XY, XZ or YZ), the location of this plane, and either the time between snap shots or
the total number of snap shots over a total run time is required.

• Volume output: This captures pressures or velocities on the entire 3-D grid as a function of
time. The type of output and the time between or total number of snap shots is required.
This gives one the ability to look at any view of the evolving wavefield as a function of
time, but the output files are enormous and this output type is generally not used unless
absolutely required. Several slice outputs over different orientations of the plane for a 3D
run may provide similar data with a reduced output file size.

While the earth model is the only required file, more complex sound source(s), receiver
locations, and a matrix used to define attenuative parameters and associated grid locations may
be defined through individual text file(s) as well. The application of attenuation in the model
may use a combination of program scripts and command flags or only command flags for any
given model.

Note that the executable itself does not have the capability to build any models. This must be
completed separately using a program like MATLAB or Python. Example command line
arguments are written with respect to using MATLAB as the program required to compile the
input files. Any computer program which can output netCDF files, such as Python, may be used
for all required pre and post processing of files for Paracousti.

3.1. The Earth Model
The earth/atmospheric model is stored in one or more netCDF format binary files
(http://www.unidata.ucar.edu/software/netcdf/). Libraries and routines for reading and writing
netCDF files in a variety of programming and scripting languages, including C, C++ and
MATLAB, are available through the above website. A netCDF file is a self-contained unit that
defines dimensions, variables and attributes within a single file that is machine independent.
Multiple variables may be contained within a single file and all the dimensions associated with
those variables are contained within that same file. The overall number of files required is driven
by the size of the domain with respect to the number of grid cells necessary.

A simple model building code for MATLAB is writeSgfdModel.m, a function that writes files in
the correct format for Paracousti. writeSgfdModel.m can write simple 1-D models, or full 3-D
models with existing 3-D MATLAB arrays. The 3-D arrays must be built elsewhere and
writeSgfdModel.m will simply write out the correct format model file for that 3-D data.

For 1-D models, the MATLAB call would be:

writeSgfdModel(modelName,x,y,z,t,’1d’,vpz,vsz,rhoz);

with modelName containing the name of the model file you want to create as a single quoted
string, x gives the x-axis values in standard MATLAB vector format, i.e., x0:dx:xf with x0 the

12

starting x-axis value, dx the increment (see below for how to determine dx) and xf is the final x-
axis value, and y, z and t provide the y, z and time axis vectors respectively (see below on how to
define dt for the time-axis), vpz is a vector of length(z) containing the vp values in m/s, vsz and
rhoz are the same except for vs (m/s) and density (kg/m3). Note that z is defined positive pointing
downwards. Also, note that vs is required for the above 1-D model call even with acoustics (this
is only true for the writeSgfdModel function for 1-D models); however, vs is ignored for acoustic
runs. The values of x, y, z, and t are the initial parameters for any input file and determine the
necessary location and value for every other input requirement to follow. For any file, x, y, and z
define the boundaries of the model domain while values of sound speed and density must be
assigned to every grid point. Matrices in you preferred program are suggested. For 3-D models,
use the call:

writeSgfdModel(modelName,x,y,z,t,’vp’,vp,’rho’,rho);

with the first five arguments the same as above. This time vp is a 3-D array of vp values (m/s)
with dimensions [nz, ny, nx]. Rho is the same except for representing density (kg/m3). These
MATLAB calls build the model file as described below.

For complex and especially large models, it is often more convenient to build the model in C,
C++, etc. To accomplish this, one must know what is required of the netCDF model file. In
addition to building the model or model input files externally, the following call may be used for
large 3D models within program:

writeSubdomainSgfdModel(modelName,x,y,z,t,[domains],’vp’,’func’,
vp,{},’rho’,’func’,rho,{});

writeSubdomainSfgdModel allows the user to call out how many netCDF files the domain input
file should be spread out upon and where to break the domain to reduce any memory problems
associated with a large model domain. In this particular call out, x, y, z, and t are defined as
stated above. Domains is a matrix defining the domain location of the interface between the
number of domains required. One row of data for each domain. This time vp and rho are still a 3-
D array of vp or rho values, but each is defined within a separate function file. This call may also
be used in a similar fashion as writeSfgdModel for 2D files if large enough to warrant its use.

Paracousti requires that several variables (and their associated dimensions) be defined within a
model file. The required dimensions are ‘NX’, ‘NY’, ‘NZ’, ‘NT’ and ‘numCoord’. Besides
‘numCoord’ which is always equal to 4, these dimensions are determined by the user based on
the desired model size and length of time of simulation. ‘NX’, ‘NY’ and ‘NZ’ define the number
of nodes in the x, y and z directions respectively. ‘NT’ gives the number of time steps to run the
algorithm (this parameter may be overridden on the command line). Upon setting up a program
file to build the input files for Paracousti, setting up the grid matrix is the first step.

Several variables are required and are outlined below (dimension followed by variable type in
parenthesis):
minima: (numCoord; float) a four element array containing [x0, y0, z0, t0], which are the

minimum values of x, y, z and t, respectively. Note that if the x-axis is oriented along the
east-west direction and the y-axis is along the north-south direction, then x increases towards
the east, y increases toward the north and z increases down into the earth. Values should

13

extend beyond the modeling area of interest by a minimum of five wavelengths dependent on
the value of your maximum source frequency to comply with CPML boundary conditions.
Minima may be negative counters with respect to the rest of the domain and may need to be
increased to reduce interference in the model for domains with a greater amount of
interactions.

increments: (numCoord; float) a four element array containing [dx, dy, dz, dt], which are the

spacing between x, y, z and t nodes. It is best if dx, dy and dz are equal. Dt is also known as
the time step. The model extents will be (NX-1)*dx, (NY-1)*dy and (NZ-1)*dz and the total
simulation time will be (NT-1)*dt. These values must be computed from characteristics of
the acoustic sound speeds in the model and on desired frequency content. The dx should be
defined as:

dx = min(Vp)/max(Freq)/10

for good wave simulation (see –hc flag below which could allow less stringent dx criteria).
Vp is the acoustic sound speed. To obtain the desired level of accuracy, a minimum of 10
grid points per desired source-wavelength are required. The 10 accounts for the number of
grid points required. So, for example, for good wave simulation with a minimum Vp of 500
m/s and a maximum frequency of 100 Hz, dx = 500/100/5 = 1 m. Note that the maximum
frequency is defined as the frequency where the far-field amplitude spectrum is 1% of its
peak value. The far-field spectrum is the doubly differentiated source waveform if an
explosion source is utilized and the singly differentiated source waveform if a force source is
utilized. The maximum dt is defined as (approximately) (if you use the –hc flag, see
requirements for dt listed there):

dt = dx/max(Vp)/2.04

It is recommended that you use the MATLAB function cflDt() in order to find the optimal dt,
especially if non-standard FD coefficients are used (-hc flag, below). To use this function,
use:

dt = CFLFraction*cflDt(dx,max(Vp),[c0 c1])

where CFLFraction should be between 0 and 1 (exclusive), and c0 and c1 are the inner and
outer coefficients, respectively, for the FD operator. [c0 c1] is an optional argument. If it is
not provided, standard Taylor Series coefficients, c0=9/8 and c1=-1/24 are assumed.
However, it is worth noting that if memory is not a problem for your file size, a smaller dt
than the calculated minima is recommended.

x: (NX; float) a vector of x-axis values
y: (NY; float) a vector of y-axis values
z: (NZ; float) a vector of z-axis values
time: (NT; float) a vector of time values

The actual geophysical parameters are given in the variables below. All geophysical parameters
must be defined on the same domain grid, step size included, as defined by the vectors of x, y,
and z axis values.

14

Vp: (NZ,NY,NX; float) a 3-D array of the compressional-wave velocities in m/s. In C, the array

is defined as a packed 1-D array with x varying the fastest, then y, then z. Velocities may be
individually calculated based upon environmental conditions and location (temperature,
salinity, suspended particulate count) and input into the array.

Rho: (NZ,NY,NX; float) a 3-D array of the densities in kg/m3. Again, densities may be
individually calculated based upon environmental conditions and location within the domain.

3.2. Boundary Conditions

The following are boundary conditions to damp unwanted reflections from the computational
domain boundary and at least one of these conditions should be imposed.

-bpc n R a k : convolutional PML with a thickness of n nodes, with parameters R, a and k. n is

typically 10, R should be 0.001 or less, a should be pi*Fpeak, where Fpeak is approximately
the dominant frequency of the source waveform, and k should be 1.

The above command applies the same CPML parameters on all 6 sides of the model. Sometimes
different CPML zones are desired for each side. This can be accomplished with the following
command:
-bpc6 nXmin Rxmin aXmin kXmin nXmax Rxmax aXmax kXmax nYmin Rymin aYmin kYmin

nYmax Rymax aYmax kYmax nZmin Rzmin aZmin kZmin nZmax Rzmax aZmax kZmax :
convolutional PML with a thickness of n nodes, with parameters R, a and k for each of the
sides. All parameters have the same meaning as in the –bpc option except specified for the
location in the simulation domain.

The convolutional PML does a better job of damping unwanted reflections than the traditional
PML, especially if the model is skinny in one dimension compared to other. This is the
recommended boundary condition for most cases. If domain boundary reflections are still
problematic, especially for very long, thin models, an MPML can be used with the indicated
command shown below.

-bpm n R a k xfac : multi-axial PML with a thickness of n nodes, and parameters R, a, k, and

xfac. N is typically 10; R should be 0.001 or less, a should be pi*Fpeak where Fpeak is
approximately the dominant frequency of the source waveform, k should be 1, and xfac, the
cross-factor, should be between 0.01 and 0.05.

Similar to –bpc6, each side of the model can be specified for an MPML using the –bpm6 flag. It
has the same form as –bpc6, except with xfac added following kZmax.

-bpm6 nXmin Rxmin aXmin kXmin nXmax Rxmax aXmax kXmax nYmin Rymin aYmin kYmin
nYmax Rymax aYmax kYmax nZmin Rzmin aZmin kZmin nZmax Rzmax aZmax kZmax xfac :
multi-axial PML with a thickness of n nodes, with parameters R, a and k for each of the
sides. Note that this means that xfac cannot be varied by side; only the other parameters may
be varied.

For simple models the traditional PML can also be used:

15

-bp n R : traditional PML with a thickness of n nodes and parameter R. n is typically 10; R
should be 0.01 or 0.001 in general.

A pressure-free surface is a physical boundary condition that is used to simulate an air-water
and/or air-earth interface that is flat. Precisely, it is the physical boundary condition that would
occur if a vacuum replaced the air; however, it is a very good approximation for air and may be
applied to the top of the model domain to approximate the air-water boundary.

-bF : a pressure-free boundary condition for the top (minimum Z) flank of the model. The actual

interface is placed at z = zmin+2*dz. Typically for these models, the z-axis is defined such
that z = 0 is coincident with the pressure-free surface; thus, zmin would typically be set to -
2*dz. The boundary condition is enforced by forcing pressure at the interface to be zero at all
time steps as well as all other conditions implied by this imposition. When the topography
and sea surface are flat, this boundary condition provides the most accurate response. It can
be used in combination with the CPML boundary, but not with the traditional PML
boundary.

3.3. Sound sources

Sources are added to the command line. Both explosion and arbitrarily oriented force sources are
available. First, a source time function must be defined. Ricker wavelet (doubly differentiated)
and delta function (impulse) source time functions can be added with command line flags or the
user can specify any arbitrary wavelet. A Ricker wavelet is nice for visualization since it is
compact in both time and frequency, but it is not a very realistic source. A delta function source
makes time slice visualization impossible, but the output is very flexible, since the output of one
model run can then be convolved with any number of source time functions, instead of having to
run a new model for each source time function. A source function of some type is required to
induce any type of perturbations within Paracousti to allow a waver function to propagate down
range. As Paracousti assumes that the background medium is not moving, any ambient noise
recorded from an environment would need to be modeled separately and overlaid with the sound
generated from a specific source or removed from any recorded data in order to compare
modeled sound propagation to experimental data.

To add a Ricker wavelet, add the following to the command line:

-Sr Fpeak

where Fpeak is the peak frequency of the desired Ricker wavelet. Note that the 1% level is about
three times this peak frequency.

To add a delta function wavelet, add the following to the command line:

-SD 0

This adds an impulse at time zero (the first time sample). The output from a delta function
wavelet is useless without convolution with a reasonable source time function. A reasonable
source time function is one that has its once- (force) or twice- (explosion) differentiated
waveform at 1% of the peak amplitude spectrum at or below the maximum frequency that the
model was designed for. Note: make sure that the model dt is multiplied into the convolution to

16

obtain accurate amplitudes. The trace output from a singular, unformatted delta function may be
convolved after the simulation run, but not the slice data as it is taken in a point in time for a
range of locations as compared to a singular location over the entire simulation time.

To add an arbitrary waveform, add the following to the command line:

-Sw filename.txt

filename.txt is a plain text file containing two columns: t and amp. T is the time starting at t0
with samples every dt. Amp is the amplitude of the source time function at that time. The
amplitudes of the source time function are usually normalized so amp varies between -1 and +1.
The length of file should be <=NT. If the file length is < NT, the source time function will be
padded with zeros out to NT samples. Just as for any source time function convolved with a delta
function, this source time function must be reasonable. In the far field, the source time function
will be once-differentiated for a force source and twice-differentiated for an explosion source.
For example, the source for an explosion source should be equal to the pressure twice integrated.
These far field wavelets should have their 1% of peak amplitude spectrum at or below the
maximum frequency that the model was designed for. Too much higher frequency energy leads
to large numerical dispersion and inaccurate results. An example explosion source is provided
below:

A = c^2/(pi()*sf^2);
amp(1:length(t)) = A*(1-cos(2*pi()*sf*t));

were c is the minimum sound speed for the system, sf is the sound source frequency, and t is the
time vector. Note that the waveform has an amplitude of 1 Pa. The specific amplitude is
specified again when the input files are written to a netCDF file, so that value may be changed to
reflect any increased amplitude. It may also be left as one if the source file (text file) already
includes the correct value of amplitude.

In order to test the frequency content of your source time function, the following procedure is
recommended. First, prepend and append a few zeros (say 3) to your discrete source time
function. This simulates the implied initial and final conditions assumed by Paracousti for source
time functions. If an explosion source is used, numerically differentiate this extended source time
function twice; if a force source is used, do the differentiation once. Now, look at the Fourier
Transform of this signal. Find the maximum frequency at which the amplitude spectrum is
greater than 1% of the peak of the spectrum.

The default interpretation of any source time function is that it is a time series of force for force
sources, or of moment for moment sources. This means that the far field wavelet will be
proportional to the single differentiation of a force source waveform or the double differentiation
of the moment source waveform. In some cases, however, it may be more convenient to specify
the moment rate waveform instead of the moment itself for moment sources. In this instance, the
far field waveform would be the single differentiation of the input moment rate waveform. In
order to specify that all following moment source waveforms are moment rate waveforms use the
flag:

-Smr

17

It is important to specify this flag before defining any of the source waveforms with –Sr, -SD, or
–Sf flags to have them interpreted as moment rate waveforms.

Once a source type or function is indicated, the type and location of the source must be specified.
To add an explosion source, add the following to the command line:

-Se x y z amp

This adds an explosion source of amplitude amp (N-m) at position x, y, z. It is at this location
that you may include the amplitude of the source function or leave it at one.

To add a force type source, add the following to the command line:

-Sfz x y z amp

This adds a vertical force source of amplitude amp (N) at position x, y, z. To specify an x-
directed or y-directed for source use –Sfx or –Sfy, respectively. Note that the command –Sf
filename.txt will still run initially thinking that the system is using a force source, but will
inevitably cause the run to fail as a force source is not associated with a direct text file input.

3.4. Receiver Data
Receivers are designated locations where data will be recorded at a particular point in the model
domain. They are only required for Trace type output and may be thought of as a sensor location
for data collection. However, the model will run even if receivers are called and there is not a file
specified to output any data. Slice output records all data for a model domain at a point in time,
not a location.

3.4.1. Trace – time history at a single or array of points
The receiver geometry can either be supplied on the command line for simple layouts or in a
plain text file for more complicated geometries. The command line allows additions of single
receivers or of a uniform grid of receivers. Using a file allows completely arbitrary receiver
placements for thousands of receivers if desired. Receiver location indicate where any trace data
will be collected during the model run.

For the file method, simply define a flat text file with three columns: x, y, and z. Each line will
be a new receiver and the x, y and z values will be in the model coordinate system located on the
predefined domain grid. If receiver locations lie between grid points, a cubic interpolation is by
default applied to the calculated data. To include the file, add the following to the command line:

-Rf3 type filename.txt

where type is either “Pressure”, “3C”, “4C”, “Vx”, “Vy” or “Vz”, where 3C gives all three
velocity components per receiver line and 4C also includes pressure.

To add individual receivers, add the following to the command line:

18

-R type x y z

This adds one receiver of type (see above) at position x, y, z in model coordinates.

To add a uniform grid of receivers, add the following to the command line:

-Rg type x0:dx:xf y0:dy:yf z0:dz:zf

This adds a uniform grid of receivers of type (see above) on the grid defined by the MATLAB
style vectors. For example, x0:dx:xf means x ranging from x0 to xf at an increment of dx; note
that dx here is independent of the model dx. Also note that the grid may be manipulated to have a
very low number of receivers as necessary if more data was required for a particular area after an
initial run. However, the grid must contain more than a singular receiver to run.

As a general note on the location of receivers, receivers may not be placed within an area in the
simulation domain required to fulfil the requirements of a boundary condition. That would
include any additional grid points required for a CPML, PML, pressure-free surface, etc. See
Section 3.2 for a further description of the boundary conditions required for Paracousti. For that
reason, it is recommended that the user start the indexing for the domain size at zero with
indexing tied to any additional cells tied to boundary conditions increasing negatively on the left
hand side of your domain; although this is not required.

Other receiver command line options that may be useful are:

-Rl : use trilinear interpolation instead of the default cubic interpolation for receiver points. This

is important to do for receivers within about 2 grid nodes of any major model interface (such
as the sea surface or sea bottom) because a cubic interpolator will reach across the interface
to obtain interpolated values, whereas trilinear interpolation is more localized.

-Ra : make acceleration traces instead of the default velocity traces

-Rd : make displacement traces instead of the default velocity traces

-Ro traceOutputFile.cdf : the trace output from the receivers will be output into this netCDF file.

There are several dimensions and variables in this file, but we will discuss only those most
pertinent to reading the file. Without a designated output file, Paracousti will not save and
output the calculated data at each designated receiver location. Trace files are set up to record
outputs from a singular designated receiver command. A separate run file will be required if
output from two sets of receiver output geometries are required. Additionally, if two receiver
geometries are specified with a singular output file, the second receiver geometry will
overwrite the first in the output file.

The ‘numReceivers’ dimension gives the number of receivers in the file. Note that this number is
the total number of components and receivers, so, for example, if you added 100 3C receivers,
numReceivers would equal 300.

The following are pertinent variables:
receiverX: (numReceivers) receiver X position

19

receiverY: (numReceivers) receiver Y position
receiverZ: (numReceivers) receiver Z position

receiverBx: (numReceivers) x-component of receiver, between 0 and 1.
receiverBy: (numReceivers) y-component of receiver.
receiverBz: (numReceivers) z-component of receiver.

Note that a Vx receiver will have receiverBx=1.0 and receiverBy and Bz equal to zero, while a
Vz receiver will have receiverBz=1.0 and the others equal to zero. Of course, for pressure
receivers, these variables will be equal to zero and are not used.

receiverType: (numReceivers) coded type of receiver. A pressure receiver will have a value of 2

here, whereas other types will have a 1.

receiverData: (numReceivers,NT) a 2-D array containing all of the trace data. Each row is a full

timeseries. Output units are in MKS units, so velocities are in m/s and pressures are in
Pascals.

3.4.2. Slice – a planar snapshot at an instant in time

As slices do not require a spatial designation, several commands exist to define whether a set
number of slices is required or which particular times throughout the simulation run data would
like to be required. Again, the type of data output must still be specified.

-En N type plane pos: this will output N snapshots of type ground motion on the given plane at

position pos evenly spaced in time. Type can be “Pressure”, “Vx”, “Vy” or “Vz”, indicating
particle velocities in each of the three indicated directions. Plane can be “XY”, “XZ” or
“YZ”. So, for example: -En 51 Pressure XZ 0, will output 51 snapshots of the pressure field
in time over the total run time of the simulation on the XZ plane at y=0. Multiple –En lines
are allowed per command line.

-Et minT:Dt:maxT type plane pos: this will output snapshots of type ground motion on the given

plane at position pos at the times specified by a MATLAB-style vector starting at time minT,
stopping at time maxT, every Dt seconds. Note that output will be written from the nearest
time-step to the specified times, i.e, there is no temporal interpolation performed. Times
outside the max and min simulation time will not be written. Additionally, times must
overlap with the original time vector and must be a multiple of the original designated time
step written for the domain input files. Remaining parameters are as in –En.

-Eo sliceFile.cdf: output the slices (snapshots) to the netCDF file sliceFile.cdf. All slices are

stored in this file, so this file may become very large for big models with many snapshots.
However, additional output files will be compiled and saved in order to collect all data
required. Each slice is stored in an appropriately named variable in the file. The variable
names are given as ‘planeType’, so the variable named ‘xzPressure’ would refer to pressure
on the xz plane. These variables are 3-D arrays of dimension (N,planeDim1,planeDim2),
where N is the number of slices, planeDim1 is the size of first of the plane dimensions and
planeDim2 is the size of the second plane dimension. So, ‘xzPressure’ from the –En example
above would have dimension (51,NZ,NX). Note that the ordering of the dimension sizes are
the same as for the 3-D geophysical parameters. A second useful variable in the cdf file has

20

the same name as the slice variable above, but with ‘Time’ appended. This variable is of
length N and gives the time at which the snapshot was taken. All variable information may
be ascertained using a MATLAB function called ncinfo.

-Ef maxPointsPerSliceFile: set the maximum number of points per variable name that can be

written to a single file. The number of points is the size of the plane times the number of
slices times the number of positions for that variable. Multiple slice output files will be
created if the total number of points exceeds maxPointsPerSliceFile. It will alter the filename
given by the –Eo flag by appending “_#” just prior to the “.cdf” ending, where # starts at 0
and is incremented until all slice variable points are in files with less than or equal to
maxPointsPerSliceFile. For example, given the –En line above, the variable is ‘xzPressure’.
If that was the only ‘xzPressure’, the –En option given then would be only 1 position, at y=0.
The total points for ‘xzPressure’ would be computed as NX*NZ*51*1 (where 51=N from the
–En example, and 1 is the number of positions). If this total points exceeds
maxPointsPerSliceFile then the slice output will be divided up among multiple output slice
files, none having its number of points exceeding maxPointsPerSliceFile. The default is
1000000000 (one billion) and maxPointsPerSliceFile should not exceed this number due to
variable size restrictions. The variable size restrictions result in a maximum file size that is
approximately 3.9 Gigabytes.

3.4.3. Volumetric – a snapshot of the entire wavefield at an instant in time

The entire wavefield can be captured at a single or multiple time steps. While this would allow
the user to capture nearly any detail they are looking for, the data requirements are likely to be
extreme. We do not recommend this as a standard output solution. Further details to be appended
shortly.

-W minT:Dt:maxT type: this will output snapshots of type for the full wavefield at the times

specified by a MATLAB-style vector starting at time minT, stopping at time maxT, every Dt
seconds. Note that output will be written from the nearest time-step to the specified times, i.e,
there is no temporal interpolation performed. Times outside the max and min simulation time
will not be written. Additionally, times must overlap with the original time vector and must
be a multiple of the original designated time step written for the domain input files.

3.5. Attenuation

There is no acoustic attenuation (damping) by default. However, by specifying the following
flags, attenuation will be turned on. While Section 7 describes the finite difference equations
required to solve the velocity-pressure equations for Paracousti (Preston, 2016) for a full
description on the implementation of attenuation in TDAAPS. TDAAPS is similar to Paracousti,
but allows for moving media and the equations may be simplified for a stationary media. The
attenuation model is allowed to have 3-D variations, but it is designed to work with a finite (and
relatively small) number of unique attenuation models. Internally, an index keeps track of which
of the attenuation models a particular grid point belongs to. The index method is also a way one
can specify the full 3-D attenuation parameterization, but there is also another method that is
based on ranges of sound speed in the 3-D model. For example, you can specify that one
attenuation model applies to sound speeds between 1490 and 1500 m/s, and another attenuation
model applies to sound speeds above 1500 m/s. This would mean that all nodes between 1490
and 1500 m/s would have the same attenuation model, model1, and all nodes with sound speeds
above 1500 m/s would have the same attenuation model, model2. Each attenuation model is

21

specified by a number of attenuation mechanisms, each of which gives the attenuation factor and
relaxation frequency. Also, the adjustment factor that adjusts the input sound speeds to the sound
speed at infinite frequency is unique to each attenuation model. However, for typical seawater
conditions, this factor is very close to 1.0 and can be chosen as 1.0 if desired.

In order to run Paracousti with attenuation, you must convert a specified attenuation loss (1/m =
neper/m) as a function of frequency to the attenuation factors and relaxation frequencies for each
attenuation model. The loss versus frequency curve may be available, but if not, the MATLAB
function seawaterAtten.m may be used to compute the loss (1/m) as a function of frequency
given temperature, depth, pH, salinity, and frequencies specified at which the loss factor should
be computed. Once a loss vs. frequency curve is obtained, the MATLAB function
acousticAttenSeek.m may be used to compute the values needed for Paracousti input for each
attenuation model. Besides providing the frequencies and loss function, the sound speed at
infinite frequency, the number of attenuation mechanisms desired (usually 2 is good), and
optionally a reference frequency need to be described. The primary output is an array of length
2*number of mechanisms, with adjacent terms being attenuation factor (a) followed by
relaxation frequency (w). Thus, for a 2-mechanism attenuation model, the output would be
[a1,w1,a2,w2]. Mechanisms are generally applied to any change in density with a two-
mechanism system referencing the values required for the water column and sediment layer in
the overall simulation. The second output, if the reference frequency is input, is the factor that
the sound speed at that reference frequency must be multiplied by in order to reach the infinite
frequency sound speed. All these parameters are required in order to specify the attenuation
model.

In Paracousti an attenuation model is given by the following flag:

-Q nR cFac w1 a1 w2 a2 … wnR anR: nR is the number of mechanisms, cFac is the factor that

the sound speed must be multiplied by to go from the input sound speeds to infinite
frequency sound speed. If the input sound speeds are for infinite frequency then cFac should
be 1.0. w1…wnR are the relaxation frequencies for the nR mechanisms. A1…anR are the
attenuation factors for the nR mechanisms. Note that if all a1…anR are 0.0 then it is
equivalent to a non-attenuating medium.

-QC minC maxC: The preceding attenuation model (-Q flag) applies to nodes whose sound

speeds are between minC and maxC. If either minC or maxC is ‘–‘ (two dashes in a row) then
it means there is no limit in that direction. This flag is optional and the last given –Q flag will
apply to all nodes not assigned thus far. Therefore, if you want every point in the model to
use the same attenuation model, then all you need to give is the –Q flag.

Note that the order of the –Q flags is important and that any –QC flag must be given before a
new –Q flag is given. If a variable called Qindex is found in the netCDF model file, then the first
–Q flag will correspond to index 0 nodes, the second to the index 1 nodes and so on. The Qindex
variable is a 3-D array the same size as vp or rho each node with an integer between 0 and
nQmodels-1, where nQmodels is how many –Q flags there will be on the command line. Each
integer value correlates with a –Q flag indicating the attenuation factor and relaxation frequency
in order to assign a particular attenuation to each grid point in the domain. Note that the –Q flag
only indicates that attenuation is being applied to a model as specified but not at what location a
particular attenuative value is applied; the Qindex matrix is required for spatial data.

22

23

4. Running Paracousti

Now that the model geometry, receivers and sources are defined we are ready to run the
program. This is a parallel code so we must use the command mpirun to tie in with the program
openmpi, followed by the number of processors (-np) and the call indicating you would like to
run the Paracousti executable. This is dependent on the version or location of the executable.

4.1. Additional Command-Line Parameters
Besides those already mentioned there are several command line parameters that are necessary or
can be used. Each of the following commands, if selected for a particular simulation, are written
together in a continuous line of code written directly on the command line prompt or in a batch
file that may be run on a command line. A batch file (text file) is recommended as it may be
saved with any other files created for a particular run and used to reproduce data at a later date as
well as the fact that it simplifies the code required to actively start running Paracousti.

modelFile.cdf : (required) The model name is provided directly after the executable with no flag
preceding it.

-p px py pz : (required) this gives the domain processor decomposition of the model. There will

be px processors in the x-direction, py in the y, and pz in the z. The code uses a master-slave
node approach to decomposition, so the total number of processors requested on the mpirun
is px*py*pz+1 = np. For numerical efficiency it is best if px is as small as possible. Note that
the number of processors that may be allocated include those available due to hyper-
threading on a particular computer.

-T t0:dt:tf : (optional) redefine the time vector for the simulation in MATLAB vector notation.

-hc 4 c0 c1 : (optional) define the 4th order spatial finite-difference coefficients to be used instead

of the default coefficients. C0 is the inner coefficient and c1 is the outer coefficient. Defaults
values for these are from the Taylor series expansion coefficients for a 4th order accurate
difference and have the values c0=9/8 and c1=-1/24. For correctly chosen values of these
coefficients and time steps the run time for a given model can be greatly reduced for a given
accuracy. For example, for a maximum phase speed error of 0.375%, coefficients c0 =
1.14337598613568, c1 = -0.0490462530034956 run at 0.5 times the CFL limit provides the
minimum run time. With this combination of parameters, dx can then be defined as:

dx = min(Vp)/max(Freq)/gnpw

where gnpw is the number of grid nodes per minimum wavelength, which in this case is 4.46
instead of 10. This allows a much larger dx than defined above in the model section. Note
that the CFL limit (maximum time step allowed for stable execution) does depend on these
coefficients and dx. The CFL limit is:

dtCFL = dx/max(Vp)/sqrt(3)/sum(absI)

where c is [c0 c1]. To achieve the desired accuracy and optimal runtime, the dt used in the
algorithm should be 0.5*dtCFL in the example stated above. For ease, it is recommended that
one use the MATLAB function cflDt() as described above under increments. In this

24

particular example, CFLFraction in the description of cflDt() would be 0.5. For other levels
of desired accuracy, the MATLAB function optimSpeedTest*.m can be used to find the
coefficients and fraction of the CFL limit (CFLFraction) that minimizes run time. Note that
Paracousti will run using the original time and spatial vector coefficients defined in the input
files; it may just not be the most efficient run time available.

This is followed by all the additional commands defining the boundary conditions, and input and
output parameters. These can be specified in any order and multiple sound sources and output
receiver types can be used.

25

5. Post-Processing Results

Details to be appended shortly. Tutorials 1 and 3 provide some beginning and advanced details

on accessing data and post-processing results from the output netCDF files.

26

6. Examples

6.1. Example 1
Considering all previous material discussed, an example acoustic run would be:

mpir–n -np 7 ParAcousti baseline.c–f -p 1 2–3 -T 0:0.00019:0–1 -
bp 10 .–1 -Sr –0 -Sfz 0 0 0–1 -Rg 4C -40:5:40 0:0 10:–0 -Ro
baselineAc.trace.cdf

This call starts 7 processes, with the domain decomposition: 1 processor for the x dimension, 2
processors in the y dimension and 3 processors in the z dimension. Use the model baseline.cdf
for the medium parameters that were already written to an input file while calling ParAcousti as
the executable. The timing given in this file is overridden so that the simulation time starts at 0
and goes to 0.1 seconds at a time step of 0.00019 s. A PML boundary 10 nodes wide with a
theoretical reflection coefficient of 0.01 will be applied to all 6 sides of the model. The source
waveform is set to a 50 Hz Ricker wavelet and a vertically down-directed force source will be
applied at the model point (0,0,0) with an amplitude of 1 N. A receiver grid of 4C receivers will
be placed on a line from x = -40 m to 40 m in 5 m increments at y = 0 m and z = 10 m. Traces
will be output into the file baselineAc.trace.cdf.

A useful tool for finding out how a certain trace or slice file was created is to use ncdump. This
is a utility program provided as part of the standard netCDF C/C++/fortran distribution. Using
the call:

ncdu–p -h filename.cdf

This command will print out the dimensions, variables, and attributes of the file. For trace and
slice files, there will be an attribute called “history” followed by the command line call that
created the file.

6.2. Example 2
A second example for an acoustic run would be:

mpir–n -np 13 ParAcousti baseline.c–f -p 1 3–4 -–F -bpc6 10 1e-6
314 1 10 1e-6 314 1 10 1e-6 314 1 10 1e-6 314 1 2 1 314 1 10 1e-
6 314–1 -Sw source.t–t -Se 100 0 2–1 -Rg Pressure 100:10:4000
0:0 0:1:–0 -Ro baselineAc.trace.c–f -En 1000 Pressure XZ–0 -Eo
baselineAc.slice.cdf

This call starts 13 processes, with the domain decomposition: 1 processor for the x dimension, 3
processors in the y dimension and 4 processors in the z dimension. Use the model baseline.cdf
for the medium parameters that were already written to an input file while calling ParAcousti as
the executable. A pressure-free boundary is applied to the top of the domain and a convolutional
PML boundary is applied to all six sides of the simulation domain as well. The thickness is equal
to 10 nodes in the x, y, and zmax dimensions with 2 in the zmin dimension. The R parameter is
set to 1e-6 in the x,y, and zmax dimensions with 1 in the zmin dimension. a and k are set to 314,
which corresponds to a frequency of 100 Hz, and 1, respectively. The source waveform is set as

27

the textfile, source.txt, and an explosive source will be applied at the model point (100,0,2) with
an amplitude of 1 N. A receiver grid of 4C receivers will be placed on a line from x = 100 m to
4000 m in 10 m increments at y = 0 m and z = 0m to 40 m in 1 m increments. Traces will be
output into the file baselineAc.trace.cdf. Over the simulation time designated in the input file,
1000 pressure snapshots in time will be taken in the XZ plane where y = 0. The snapshots or
slices will be output into the file baselineAc.slice.cdf where the standard maximum number of
data points per file are used.

28

7. Theory
7.1. Solution Equations

A set of coupled first order linear partial differential equation known as the velocity-pressure
system were derived from a linearization of continuity, Cauchy’s equations of motion, a
constitutive relationship for stress, and a balance of entropy (Hafla, 2018):

𝛿𝑣∗

𝛿𝑡 +
1
𝜌° ∇𝑝

∗ =
1
𝜌°
[𝑭 + ∇𝒎/01] (1a)

(1b) 𝛿𝑝∗

𝛿𝑡 + 𝜌
°(𝑐°)6∇ ∙ 𝑣∗ = −

1
3
𝛿𝒎:;<

𝛿𝑡

where 𝑣(𝒙, 𝑡) and 𝑝(𝒙, 𝑡) are the dependent variables of particle velocity and pressure
perturbations, respectively; 𝜌(𝒙) is material density and c is sound speed. Either a * or ° indicate
whether the term is caused by a perturbation or related to the ambient conditions, respectively.
The right hand terms in these equations are body source terms: 𝑭 is the force density vector,
𝒎/01 is the anti-symmetric portion of the moment density tensor and 𝒎:;< is the trace of the
symmetric portion of the moment density tensor. The anti-symmetric and symmetric portions of
the moment density tensors may also be considered as the deviatoric and isotropic portions,
respectively. A moment tensor is a 3 × 3 tensor that describes the action of various combinations
of force couples applied at a point in space. The isotropic portion, which represents a source of
pressure and the hydrostatic portion of the moment density tensor, of the source is proportional
to the trace of the moment tensor. Quite complex sources can be built by various combinations of
these terms. Outside of the source region, the body source terms are zero, yielding a
homogeneous system of partial differential equations.

For this solution, the fluid is considered inviscid and adiabatic with the background fluid having
a particle velocity of zero. It is further assumed that the background medium is stationary and
that all background medium properties are constant in time until a sound perturbation is
introduced into the system. Density perturbations caused by a sound wave are preserved through
the derivation allowing the sound wave to propagate through a system even though the ambient
fluid is considered incompressible for the velocity-pressure equations.

An alternative method for initiating wave motion is by imposing time varying boundary
conditions on the dependent variables (both velocity and pressure). These boundary conditions
can be computed with another algorithm that can more accurately simulate non-linear or other
near-source effects. This approach allows one to both compute the near-source effects to high
accuracy and also to propagate these effects efficiently out into the far field.

Note that both the densities and bulk moduli are functions of 3-D space but not of time.
Arbitrarily complex 3-D distributions of medium properties are allowed including topography,
bathymetry, acoustic sound speed variations due to temperature, salinity, and pressure in the
water, in addition to sub-sea bed variations in earth structure. Also, stationary atmospheric
models (i.e, without wind) can be utilized. Furthermore, purely acoustic simulations within the
solid earth can be made where computational speed is essential, albeit at the cost of only
generating compressional waves in these cases, whereas in reality, shear waves and all their
related phenomena would be created as well. Careful treatment of high contrast interfaces, such

29

as air-earth, water-air, water-earth, using the order-switching technique outlined in Preston, et al.
(2008) allows accurate and stable simulation across these boundaries. More simplistic models
may also be developed for testing and evaluation purposes. A more detailed derivation can be
found in (Aldridge, 2005; Hafla, 2018).

7.2. Solution Methodology

A finite difference scheme is utilized in order to solve the velocity-pressure system of Equation
1. The numerical modeling domain is defined by a uniform Cartesian grid of points such as
shown in Figure 2. Figure 3 zooms in on one cell of the domain with a size of dx × dy × dz. The
eight corner nodes of this cell contain medium densities, bulk moduli and the pressure dependent
variables. The three components of particle velocities reside on the twelve edges of the cell. This
arrangement is known as a standard staggered grid. It allows central differencing of all the
dependent variables to be used. The time axis is divided into equal segments of length dt, where
the time step remains constant. Time is also staggered with pressure updates occurring on the
integer time raster and velocity updating occurring on the half integer time raster. Again, this
allows for more accurate central differencing.

Figure 2: The computational domain (large box) represented by a 3-D uniformly spaced grid
with nodes (grid points) indicated by black dots.

30

Fourth-order accurate finite differencing is utilized to approximate the spatial derivatives in
Equation 1, while second-order accurate templates are used for the temporal derivatives.
However, near high contrasts in medium parameters, such as at the air-water, air-earth or water-
earth interface, we use second-order spatial accuracy in the immediate vicinity of the interface to
increase accuracy and preserve numerical stability (Preston et al., 2008). Time evolution uses an
explicit in-time leap-frog method. The staggered grid and solution-step removes spurious
oscillations within the solution. Due to the nature of a finite grid, the water-sediment layer
interface of the domain is not continuously smooth, but rather steps at grid points. However, the
grid size is dictated by the highest contributing frequency and so the interactions at the interface
are well captured. The discretized equations for the finite difference solution with a full
derivation are provided in (Preston, 2016); contributions from a moving ambient filed are
included. For Paracousti, equations were simplified to omit background velocities, as they are
significantly smaller than the speed of sound in underwater systems. The finite difference
equations are shown below.

𝑣?@A𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2 K = 𝑣?@A𝑥: +

𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

3𝑑J
2 K (2a)

Figure 3: Arrangement of dependent variables and medium parameters for one cell of the
standard staggered grid.

31

−
1

𝜌L M𝑥: +
𝑑?
2 , 𝑦I, 𝑧HN

{𝑝?[𝑃Q(𝑥: + 𝑑?, 𝑦F, 𝑧H, 𝑡I) + 𝑃Q(𝑥: + 𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J)

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥: + 2𝑑?, 𝑦F, 𝑧H, 𝑡I)
+𝑃Q(𝑥: + 2𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J) − 𝑃Q(𝑥: − 𝑑?, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥: − 𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J)]}

+
1

𝜌L(𝑥: +
𝑑?
2 , 𝑦I, 𝑧H)

𝑓?U (𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)

𝑣V@ W𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 X = 𝑣V@W𝑥:, 𝑦F +

𝑑V
2 , 𝑧H, 𝑡I −

3𝑑J
2 X

−
1

𝜌L A𝑥:, 𝑦I +
𝑑V
2 , 𝑧HK

{𝑝?[𝑃Q(𝑥:, 𝑦F + 𝑑V, 𝑧H, 𝑡I) + 𝑃Q(𝑥:, 𝑦F + 𝑑V, 𝑧H, 𝑡I − 𝑑J)

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥:, 𝑦F + 2𝑑V, 𝑧H, 𝑡I)
+𝑃Q(𝑥:, 𝑦F + 2𝑑V, 𝑧H, 𝑡I − 𝑑J) − 𝑃Q(𝑥:, 𝑦F − 𝑑V, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F − 𝑑V, 𝑧H, 𝑡I − 𝑑J)]}

+
1

𝜌L(𝑥:, 𝑦I +
𝑑V
2 , 𝑧H)

𝑓VU (𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)

(2b)

𝑣YZ A𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I +

𝑑J
2 K = 𝑣YZ A𝑥:, 𝑦F, 𝑧H +

𝑑Y
2 , 𝑡I −

3𝑑J
2 K

−
1

𝜌L M𝑥:, 𝑦I, 𝑧H +
𝑑Y
2 N

{𝑝?[𝑃Q(𝑥:, 𝑦F, 𝑧H + 𝑑Y, 𝑡I) + 𝑃Q(𝑥:, 𝑦F, 𝑧H + 𝑑Y, 𝑡I − 𝑑J)

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥:, 𝑦F, 𝑧H + 2𝑑Y, 𝑡I)
+𝑃Q(𝑥:, 𝑦F, 𝑧H + 2𝑑Y, 𝑡I − 𝑑J) − 𝑃Q(𝑥:, 𝑦F, 𝑧H − 𝑑Y, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H − 𝑑Y, 𝑡I − 𝑑J)]}

+
1

𝜌L(𝑥:, 𝑦I, 𝑧H +
𝑑Y
2)

𝑓YU(𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I −

𝑑J
2)

(2c)

Equations 2a – 2c represent the x, y, and z components of the particle velocity on a half step as
defined previously with steps of i, j, k, and l correlating to x, y, z, and time, t, respectively. 𝑣 is
the particle velocity, 𝑃 the perturbation pressure, 𝜌 the density, x, y, and z are the spatial
locations, d the grid spacing, 𝑓 is a force source vector, and both 𝑝 and 𝑞 acting as memory
variable containing staggered fourth-order accurate non-dimensional finite-difference
coefficients. The pressure equation (4) is as follows along with required expansions (3a – 3c) for
equations (2). Full descriptions of the force source vector and memory variables are provided in
(Preston, 2016; Ostashev, 2005). With respect to the pressure equation, 𝜅 is the bulk modulus, 𝜔
the relaxation frequency, 𝑅 and r are memory variables, and 𝑒 is the energy density source.

+
1

𝜌L(𝑥: +
𝑑?
2 , 𝑦I, 𝑧H)

𝑓?U(𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)

(3a)

32

+
1

𝜌L(𝑥:, 𝑦I +
𝑑V
2 , 𝑧H)

𝑓VU (𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)

(3b)

+
1

𝜌L(𝑥:, 𝑦I, 𝑧H +
𝑑Y
2)

𝑓YU(𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I −

𝑑J
2)

(3c)

𝑃Q_𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J` = 𝑃Q_𝑥:, 𝑦F, 𝑧H, 𝑡I`

−𝜅̂(𝑥:, 𝑦F, 𝑧H){𝑝?[𝑣?@(𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2) + 𝑣?@(𝑥: +

𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)

−𝑣?@(𝑥: −
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2) − 𝑣?@(𝑥: −

𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)]

+𝑞?[𝑣?@(𝑥: +
3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2) + 𝑣?@(𝑥: +

3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)

−𝑣?@(𝑥: −
3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2) − 𝑣?@(𝑥: −

3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2)]

𝑝V[𝑣V@(𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2) + 𝑣V@(𝑥:, 𝑦F +

𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)

−𝑣V@(𝑥:, 𝑦F −
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2) − 𝑣V@(𝑥:, 𝑦F −

𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)]

+𝑞V[𝑣V@(𝑥:, 𝑦F +
3𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2) + 𝑣V@(𝑥:, 𝑦F +

3𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)

−𝑣V@(𝑥:, 𝑦F −
3𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2) − 𝑣V@(𝑥:, 𝑦F −

3𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2)]

+𝑝Y[𝑣YZ (𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I +

𝑑J
2) + 𝑣YZ (𝑥:, 𝑦F, 𝑧H +

𝑑Y
2 , 𝑡I −

𝑑J
2)

−𝑣YZ (𝑥:, 𝑦F, 𝑧H −
𝑑Y
2 , 𝑡I +

𝑑J
2) − 𝑣YZ (𝑥:, 𝑦F, 𝑧H −

𝑑?
2 , 𝑡I −

𝑑J
2)]

+𝑞Y[𝑣YZ (𝑥:, 𝑦F, 𝑧H +
3𝑑Y
2 , 𝑡I +

𝑑J
2) + 𝑣YZ (𝑥:, 𝑦F, 𝑧H +

3𝑑Y
2 , 𝑡I −

𝑑J
2)

−𝑣YZ (𝑥:, 𝑦F, 𝑧H −
3𝑑Y
2 , 𝑡I +

𝑑J
2) − 𝑣YZ (𝑥:, 𝑦F, 𝑧H −

3𝑑Y
2 , 𝑡I −

𝑑J
2)]}

−𝜅̂_𝑥:, 𝑦F, 𝑧H`b
1
2

c

def

𝑑J𝜔dg𝑝d@_𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J` + 𝑝d@_𝑥:, 𝑦F, 𝑧H, 𝑡I`h

+𝑒̂(𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J) − 𝑒̂(𝑥:, 𝑦F, 𝑧H, 𝑡I)

(4)

In order to simulate an unbounded domain, we impose “absorbing boundary conditions” (ABC)
on the flanks of the 3-D grid in order to suppress reflected energy. Two choices of absorbing
boundary conditions are available: sponge (wavefield taper) or perfectly matched layers (PMLs).
PMLs have been implemented instead of the sponge boundary as the performance is better of a
layer of a similar thickness. The PML is an ABC that is theoretically perfect in that at the start of
the PML zone, there is zero reflection back into the computational domain. This is not absolute
in practice, but provides an adequate boundary condition for Paracousti (Cerjan et al., 1985;
Beringer, 1994). Three PML options are provided: traditional PML, convolutional PML
(CPML), and multi-axial PML (MPML). The MPML is the most general form, with the others
being special cases. In a MPML, unlike the traditional or CPML, the wavefield is damped both

33

perpendicular and parallel to the domain face (Meza-Fajardo et al., 2008). This will produce
some small reflection back into the computational domain, but in certain instances, such as long-
propagating grazing incidence waves, the MPML outperforms the other PML types. The CPML
(Komatitsche and Martin, 2007) was designed to greatly reduce boundary and grazing incidence
effects that troubled the traditional PML. This results in a negligible amount of energy that is
reflected back inside the domain from the boundaries of the computational domain. For most
problems, the CPML is recommended, but if grazing incidence waves appear in the solution, the
MPML would be second. Only for very simple problems where grazing incidence wave will not
be a concern should the traditional PML be considered. The grazing angle may also be manually
reduced by increasing the size of the zone along the boundary of the domain dedicated to the
boundary condition.

Additionally, the ability to impose a pressure-free surface at the water-air or earth-air interface is
available. Although not strictly true at these interfaces, it is a very good approximation. An
alternative that may be used, however, is to simply assign air or vacuum properties above the
water or earth. This latter approach must be used when there is topography since the pressure-
free surface implementation requires the air-earth and/or air-water interface to be flat.

34

8. Conclusions

This brief report outlines the processes needed to use the 3-D massively parallel acoustic
simulation code Paracousti. This code has the ability to perform 3-D full waveform acoustic
simulations in solid, fluid, and (ideal) gaseous media with support for accurate high contrast
interfaces between varying media types, including realistic topography, bathymetry, and
subterranean voids. Although ideal, fixed fluid and gaseous media are assumed, it can
incorporate attenuative losses that would be expected from physical mechanisms such as
molecular dissipation. Furthermore, Paracousti has the capability to calculate the propagated
sound field from multiple sound sources with unique profiles and these sources can have
monopole and/or dipole contributions. As each finite-difference grid point allows for separate
density and sound speed values, real world domains can be easily represented, evaluated and
compared to analytical solutions and literature. As this program was developed for modeling
MHK deployments, examples previously presented in this report and available for Paracousti are
for modeling any underwater sound-source and its propagation. Additional modeling information
is available at:

https://github.com/SNL-WaterPower/Paracousti

35

9. References

1. Aldridge, D.F., S.L. Collier, D.H. Merlin, V.E. Ostashev, N.P. Symons, and D.K. Wilson,

Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric
Acoustic Propagation Suite (TDAAPS), Technical Report, Sandia National Laboratories,
Albuquerque, NM, pp. 1-107, 2005.

2. Berenger, J-P., A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J.
Comp. Phys., 114, 185-200, 1994.

3. Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, A Non-Reflecting Boundary Condition for
Discrete Elastic and Acoustic Wave Equations, Geophys., 50 (4), 705-708, 1985.

4. Hafla, E., E. Johnson, C.N. Johnson, L. Preston, D. Aldridge, and J.D. Roberts, Modeling
underwater noise propagation from marine hydrokinetic power devices through a time-
domain, velocity-pressure solution, J. Acoust. Soc. Am., 143 (6), 1-12, 2018.

5. Komatitsch, D., and R. Martin, An Unsplit Convolutional Perfectly Matched Layer Improved
at Grazing Incidence for the Seismic Wave Equation, Geophys., 72 (5), SM155-SM167,
doi 10.1190/1.2757586, 2007.

6. Meza-Fajardo, K.C., and A.S. Papageorgiou, A Nonconvolutional, Split-Field, Perfectly
Matched Layer for Wave Propagation in Isotropic and Anisotropic Elastic Media:
Stability Analysis, Bull. Seis. Soc. Am., 98 (4), 1811-1836, doi: 10.1785/0120070223,
2008.

7. Ostashev, V.E., D.K. Wilson, L. Liu, D.F. Aldridge, N.P. Symons, and D. Marlin, Equations
for finite-difference, time-domain simulation of sound propagation in moving
inhomogeneous media and numerical implementation, J. Acoust. Soc. Am., 117 (2), 503–
517, 2005.

8. Preston, L.A., TDAAPS 2: Acoustic Wave Propagation in Attenuative Moving Media,
SAND2016-7859, Sandia National Laboratories, Albuquerque, NM, August 2016.

9. Preston, L.A., D.F. Aldridge, N.P. Symons, Finite-Difference Modeling of 3D Seismic Wave
Propagation in High-Contrast Media, Soc. Expl. Geophys. 2008 Annual Meeting Extended
Abstracts, 2008.

10. Symons, N.P., D.F. Aldridge, D.H. Marlin, S.L. Collier, D.K. Wilson, V.E. Ostashev,
Modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS),
SAND2006-2540, Sandia National Laboratories, Albuquerque, NM, May 2006.

36

10. Appendix I: List of Commands

For the user’s convenience, the following section contains an alphabetical list of all the
commands described within this document along with the page number where the original
description of the command may be found. It also includes a brief description of each
component. For further detail or suggestions on implementation, please reference the appropriate
page.

10.1. Commands:

 Page
-bF: a pressure-free surface boundary condition that is used to simulate an air-water

and/or air-earth interface that is flat for the top (minimum Z) flank of the
model. The actual interface is placed at z = zmin+2*dz. Typically for these
models, the z-axis is defined such that z = 0 is coincident with the pressure-
free surface; thus, zmin would typically be set to -2*dz.

15

-bp n R : traditional PML boundary condition with a thickness of n nodes and
parameter R. n is typically 10; R should be 0.01 or 0.001 in general.

15

-bpc n R a k : convolutional PML boundary condition with a thickness of n nodes,
with parameters R, a and k. n is typically 10, R should be 0.001 or less, a
should be pi*Fpeak, where Fpeak is approximately the dominant frequency of
the source waveform, and k should be 1.

14

-bpc6 nXmin RXmin aXmin kXmin nXmax RXmax aXmax kXmax nYmin RYmin
aYmin kYmin nYmax RYmax aYmax kYmax nZmin RZmin aZmin kZmin
nZmax RZmax aZmax kZmax : convolutional PML boundary condition with a
thickness of n nodes, with parameters R, a and k for each of the sides. All
parameters have the same meaning as in the -bpc option except specified for
the location in the simulation domain.

14

-bpm n R a k xfac : multi-axial PML boundary condition with a thickness of n
nodes, and parameters R, a, k, and xfac. n is typically 10; R should be 0.001 or
less, a should be pi*Fpeak where Fpeak is approximately the dominant
frequency of the source waveform, k should be 1, and xfac, the cross-factor,
should be between 0.01 and 0.05.

14

-bpm6 nXmin RXmin aXmin kXmin nXmax RXmax aXmax kXmax nYmin RYmin
aYmin kYmin nYmax RYmax aYmax kYmax nZmin RZmin aZmin kZmin
nZmax RZmax aZmax kZmax xfac: multi-axial PML boundary condition with
a thickness of n nodes, with parameters R, a and k for each of the sides. See –
bpm command.

15

-Ef maxPointsPerSliceFile : sets the maximum number of points per variable name
that can be written to a single file. The number of points is the size of the
plane times the number of slices times the number of positions for that
variable. Multiple slice output files will be created if the total number of

20

37

points exceeds maxPointsPerSliceFile. It will alter the filename given by the -
Eo flag by appending “_#” just prior to the “.cdf” ending, where # starts at 0
and is incremented until all slice variable points are in files with less than or
equal to maxPointsPerSliceFile. The default is 1000000000 (one billion) and
maxPointsPerSliceFile should not exceed this number due to netCDF variable
size restrictions.

-En N type plane pos : outputs N snapshots of type ground motion on the given

plane at position pos evenly spaced in time. type can be “Pressure”, “Vx”,
“Vy” or “Vz”, indicating particle velocities in each of the three indicated
directions. plane can be “XY”, “XZ” or “YZ”.

26

-Eo sliceFile.cdf : output the slices (snapshots) to the netCDF file sliceFile.cdf.

26

-Et minT:Dt:maxT type plane pos: outputs snapshots of type ground motion on the
given plane at position pos at the times specified by a MATLAB-style vector
starting at time minT, stopping at time maxT, every Dt seconds. Remaining
parameters are as in -En.

20

-hc 4 c0 c1 : define the 4th order spatial finite-difference coefficients to be used
instead of the default coefficients. c0 is the inner coefficient and c1 is the
outer coefficient. Defaults values for these are from the Taylor series
expansion coefficients for a 4th order accurate difference and have the values
c0=9/8 and c1=-1/24.

23

-np : number of processors.

23

modelFile.cdf : the model name provided directly after the executable with no flag
preceding it.

23

-p px py pz : gives the domain processor decomposition of the model. There will be
px processors in the x-direction, py in the y, and pz in the z. The code uses a
master-slave node approach to decomposition, so the total number of
processors requested on the mpirun is px*py*pz+1 = np.

23

-R type x y z : This adds one receiver of type is either “Pressure”, “3C”, “4C”,
“Vx”, “Vy” or “Vz” at position x, y, z in model coordinates. A 3C gives all
three velocity components per receiver line and 4C also includes pressure.

18

-Ra : make acceleration traces instead of the default velocity traces.

19

-Rd : make displacement traces instead of the default velocity traces.

19

-Rf3 type filename.txt : where type is either “Pressure”, “3C”, “4C”, “Vx”, “Vy” or
“Vz”; A 3C gives all three velocity components per receiver line and 4C also
includes pressure. filename.txt represents the text file containing three
columns with the x, y, and z reciever position.

18

38

-Rg type x0:dx:xf y0:dy:yf z0:dz:zf : Adds a uniform grid of receiver of type
“Pressure”, “3C”, “4C”, “Vx”, “Vy” or “Vz”, defined by MATLAB style
vectors. A 3C gives all three velocity components per receiver line and 4C
also includes pressure. For example, x0:dx:xf means x ranging from x0 to xf
at an increment of dx.

18

-Rl : use trilinear interpolation instead of the default cubic interpolation for receiver
points.

18

-Ro traceOutputFile.cdf : output the trace data from the receivers to this netCDF
file.

19

-SD 0 : add a delta function wavelet as a spike at time zero.

16

-Se x y z amp : add an explosion source of amplitude amp (N-m) at position x, y, z.

17

-Sfz x y z amp : add a force type source of amplitude amp (N-m) at position x, y, z.
To specify an x-directed or y-directed for source use -Sfx or -Sfy,
respectively.

17

-Smr : specifies that the following moment source waveforms are moment rate
waveforms.

17

-Sr Fpeak : add a Ricker wavelet as a source, where Fpeak is the peak frequency of
the desired Ricker wavelet.

15

-Sw filename.txt : add an arbitrary waveform, where filename.txt is a plain text file
containing two columns: t and amp. t is the time starting at t0 with samples
every dt. amp is the amplitude of the source time function at that time.

16

-T t0:dt:tf : redefine the time vector for the simulation in MATLAB vector
notation.

23

-Q nR cFac w1 a1 w2 a2 … wnR anR: nR is the number of mechanisms, cFac is the
factor that the sound speed must be multiplied by to go from the input sound
speeds to infinite frequency sound speed. If the input sound speeds are for
infinite frequency then cFac should be 1.0. w1…wnR are the relaxation
frequencies for the nR mechanisms. a1…anR are the attenuation factors for
the nR mechanisms. Note that if all a1…anR are 0.0 then it is equivalent to a
non-attenuating medium.

21

-QC minC maxC: The preceding attenuation model (-Q flag) applies to nodes
whose sound speeds are between minC and maxC. If either minC or maxC is
‘--' (two dashes in a row) then it means there is no limit in that direction.

22

39

