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1. Introduction 
 
Paracousti is a parallelized acoustic wave propagation simulation package developed at Sandia 
National Laboratories and Montana State University. It solves the linearized coupled set of 
acousto-dynamic partial differential equations, a pair of velocity and pressure equations, using 
finite-difference approximations that are second order accurate in time and fourth order accurate 
in space. Paracousti simulates sound wave propagation within realistic 3-D earth, atmosphere and 
hydroacoustic models, including 3-D variations in medium densities due to changes in topography 
or bathymetry and acoustic sound speeds, including voids in the subsurface. A combined 
discretization of both fluid and solid domains enable varying properties in all spatial coordinates 
to be used, as measurements or simulation data becomes available. Sound-source profiles are 
evaluated as moment tensors, allowing combinations of monopole and higher-order forces. 
Although it assumes ideal fluid media, it can also simulate sound wave propagation in attenuative 
media, such as would be expected from physical mechanisms like molecular dissipation. The code 
assumes that the densities and sound speeds are fixed in time over the duration of a run. Paracousti 
uses a massively parallel design. It can run efficiently on a signal machine or on a massively 
parallel machine with thousands of cores. 
 
Paracousti was created as an alternative solution to the Helmholtz and wave equation methods 
traditionally employed to model and predict the sound propagation generated from a single or array 
of Marine hydrokinetic (MHK) devices in the absence of measured sound levels. MHK devices 
generate electricity from the motion of tidal and ocean currents as well as ocean waves to provide 
an additional source of renewable energy available to the United States. These devices are a source 
of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines and address 
stakeholder concerns.  
 
Example simulations and code presented in this manual are derived from this initial purpose. As 
Paracousti may be applied to a wide variety of environments, the applications are far more 
widespread. All examples in this report are presently written for MATLAB. 
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2. Installation 
 

2.1. Software Environment and Setup 
Paracousti is a collection of C, C++ and Fortran source files. As such, to compile Paracousti a 
compiler capable of compiling all these languages is required. A netCDF 3+ library must also be 
on your library path. MPI (openMPI) is an additional requirement for compilation and may be 
downloaded online. 
 
If you have an executable of Paracousti, then the netCDF requirement depends on whether the 
netCDF library was statically linked internally to the executable. If it was bundled as a static 
internal library, then the netCDF library need not be on the machine. In all cases, it is required 
that standard C, C++, and Fortran libraries reside on your runtime library path. MPI is needed to 
run Paracousti, even on a single machine. Paracousti must always be executed through mpirun or 
mpiexec. 
 
Paracousti should run on most Linux distributions. Paracousti_Linux has been built in Red Hat 
and is routinely tested and used on Debian, under Ubuntu. All support tutorials and input files 
have been written in MATLAB.  
 

2.2. Pre-compiled executable 
The current pre-compiled executable of ParAcousti_Linux was compiled with gcc 4.7.1, mpi 
1.8.1, and netCDF 4.4.1.1 on 64-bit Red Hat Enterprise Linux Workstation release 6.8. This 
executable requires dynamically linked openmpi and netCDF libraries.  
 

2.3. Compiling the executable 
The source-code is available at the GitHub repository. A makefile is available to build Paracousti 
under a Linux distribution of your choice. Further details to be appended shortly. 
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3. Creating a Paracousti Simulation 
 
A three-step modeling process for simulating acoustic wave propagation is depicted in general 
terms in Figure 1 The numerical simulation algorithm (center box) accepts various inputs (left 
column) and then calculates and outputs various data types (right column).  Inputs into 
Paracousti are: 1) the “earth model”, consisting of a gridded representation of the medium 
parameters defined on a 3-D rectangular grid, 2) a description of the recording geometry (i.e., 
types and positions of acoustic energy sources), and 3) the desired outputs. The size of the 
domain depends on the region(s) of interest and can encompass water, earth, and air domains, but 
as shear waves are not included; each domain is treated as a fluid. Calculated data are of three 
types: 1) traces, or time-series of particle velocities or pressure at designated receiver locations in 
the 3-D grid; 2) “time slices” or 2-D pictures of time-evolving acoustic wavefields; and 3) 3-D 
wavefield volumes. Visualization software (often user-specific) is needed to display these data 
types. 
 
A Paracousti simulation is defined and executed through an earth model and a series of 
command-line flags. The earth model defines the spatial model boundaries, Cartesian grid used 
to solve the model, and environmental properties associated with each location within the grid. 
All inputs associated with the earth model are separate from any flags that define how the 
problem should be solved (boundary conditions for example) and must be put together in a 

Inputs 

Algorithm control 
parameters via command 

line flags 

Earth model (3-D gridded 
representation of medium 

parameters) 

Source parameters 
including type(s), 

locations(s) and amplitude 
variations with time 

Receiver parameters 
including type(s) and 

location(s) 

Optional wavefield initial 
conditions of time varying 

boundary conditions 

3-D finite-difference acoustic wave 
propagation algorithm 

 
Paracousti 

Trace output from 
receivers 

Timeslice output from 2-D 
snapshots of the 

wavefields 

3-D wavefield volume 
output 

Outputs 
Require visualization software 

Simulation Algorithm 

Figure 1:  General depiction of the acoustic wave propagation modeling process. 



 

10 

program external to Paracousti, which runs only as an executable. The following are the 
properties required for constructing the earth model: 
• Bathymetry: Measurement of the depth of water to the bottom of the body of water. It is 

required to define the individual parameter values for every grid point in the model domain as 
well as the overall size of the model domain 

• Density:  Medium mass density as a function of space over the entire 3-D model domain; 
individual values for every grid point 

• Acoustic Sound Speed: Medium sound speed as a function of space over the entire 3-D model 
domain; individual values for every grid point 

 
Once the model domain is defined along with any properties associated with every grid point 
location, command line flags are further used to describe any further boundary conditions, 
attenuative properties, energy sources, how Paracousti should accomplish the solution process, 
and required output. Data associated with flags other than those defined for output are defined 
below:  
• Boundary conditions: All edges of the model domain must be constrained or described by a 

boundary condition. The available boundary conditions are outlined as: 
• Pressure-Free Surface: The air portion of the air-water interface on the top side of the 

domain is approximated as a vacuum. If this boundary condition is not used, the model 
assumes an infinite water depth above the model domain. 

• Convolutional Perfectly Matched Layers & Perfectly Matched Layers: These boundaries 
require a buffer zone around on any domain boundary that they are applied to that is used 
to dampen any unwanted reflections from reentering the model domain and negatively 
affecting the simulation solution. CPMLs and PMLs have slightly different requirements 
and applications dependent on the dimensions of the model domain. 

• Attenuation: Additional energy dissipation may be added to the system through an attenuation 
factor. Paracousti assumes that the ambient medium is ideal and attenuation values are 
assumed to be zero unless otherwise stated. They may be applied individually to each grid 
point or for a range of density values. 

• Sound source Information: Sources are required to provide an energy source which can then 
propagate through the model domain. Options for these sources are: 

• Body force and/or moment tensor sources. Each source requires a location in 3-D space and 
how the source amplitude varies as a function of time. 

• Time dependent boundary conditions:  Pressure and the three components of particle 
velocity as required on a surface as a function of time. More detail is given below. 

• Output type and parameters: Several types of data output are available. Depending on the data 
type, different parameters are required for definition. Receiver locations are required to define 
any particular location that a type of data should be located. It is worth noting that the type of 
data required at the solution completion must be specified prior to running the model. Not all 
output types require a specific collection point required by receivers. The three general forms 
of output data are as follows: 

• Trace data: These represent point receivers (like a hydrophone) in the model. They record 
pressures or particle velocities at a specific location as a function of time. The 3-D location 
and type of trace (pressure, x-component of velocity, etc.) are required to define a trace. 
The specified location of the trace must align with the underlying Cartesian grid assigned 
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for the model. This is the only type of output data that requires a specific collection 
location. 

• Time slices:  This output type captures pressures or velocities on a 2-D slice through the 
model as a function of time. The slice plane must be aligned with the underlying Cartesian 
grid assigned for the model. The type of output (e.g., pressure, etc.), the orientation of the 
plane (XY, XZ or YZ), the location of this plane, and either the time between snap shots or 
the total number of snap shots over a total run time is required.  

• Volume output:  This captures pressures or velocities on the entire 3-D grid as a function of 
time. The type of output and the time between or total number of snap shots is required. 
This gives one the ability to look at any view of the evolving wavefield as a function of 
time, but the output files are enormous and this output type is generally not used unless 
absolutely required. Several slice outputs over different orientations of the plane for a 3D 
run may provide similar data with a reduced output file size. 

 
While the earth model is the only required file, more complex sound source(s), receiver 
locations, and a matrix used to define attenuative parameters and associated grid locations may 
be defined through individual text file(s) as well. The application of attenuation in the model 
may use a combination of program scripts and command flags or only command flags for any 
given model. 
 
Note that the executable itself does not have the capability to build any models. This must be 
completed separately using a program like MATLAB or Python. Example command line 
arguments are written with respect to using MATLAB as the program required to compile the 
input files. Any computer program which can output netCDF files, such as Python, may be used 
for all required pre and post processing of files for Paracousti. 
 

3.1. The Earth Model 
The earth/atmospheric model is stored in one or more netCDF format binary files 
(http://www.unidata.ucar.edu/software/netcdf/). Libraries and routines for reading and writing 
netCDF files in a variety of programming and scripting languages, including C, C++ and 
MATLAB, are available through the above website. A netCDF file is a self-contained unit that 
defines dimensions, variables and attributes within a single file that is machine independent. 
Multiple variables may be contained within a single file and all the dimensions associated with 
those variables are contained within that same file. The overall number of files required is driven 
by the size of the domain with respect to the number of grid cells necessary.  
 
A simple model building code for MATLAB is writeSgfdModel.m, a function that writes files in 
the correct format for Paracousti. writeSgfdModel.m can write simple 1-D models, or full 3-D 
models with existing 3-D MATLAB arrays. The 3-D arrays must be built elsewhere and 
writeSgfdModel.m will simply write out the correct format model file for that 3-D data. 
 
For 1-D models, the MATLAB call would be: 
 
writeSgfdModel(modelName,x,y,z,t,’1d’,vpz,vsz,rhoz); 
 
with modelName containing the name of the model file you want to create as a single quoted 
string, x gives the x-axis values in standard MATLAB vector format, i.e., x0:dx:xf with x0 the 
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starting x-axis value, dx the increment (see below for how to determine dx) and xf is the final x-
axis value, and y, z and t provide the y, z and time axis vectors respectively (see below on how to 
define dt for the time-axis), vpz is a vector of length(z) containing the vp values in m/s, vsz and 
rhoz are the same except for vs (m/s) and density (kg/m3). Note that z is defined positive pointing 
downwards. Also, note that vs is required for the above 1-D model call even with acoustics (this 
is only true for the writeSgfdModel function for 1-D models); however, vs is ignored for acoustic 
runs. The values of x, y, z, and t are the initial parameters for any input file and determine the 
necessary location and value for every other input requirement to follow. For any file, x, y, and z 
define the boundaries of the model domain while values of sound speed and density must be 
assigned to every grid point. Matrices in you preferred program are suggested. For 3-D models, 
use the call: 
 
writeSgfdModel(modelName,x,y,z,t,’vp’,vp,’rho’,rho); 
 
with the first five arguments the same as above. This time vp is a 3-D array of vp values (m/s) 
with dimensions [nz, ny, nx]. Rho is the same except for representing density (kg/m3). These 
MATLAB calls build the model file as described below. 
 
For complex and especially large models, it is often more convenient to build the model in C, 
C++, etc. To accomplish this, one must know what is required of the netCDF model file. In 
addition to building the model or model input files externally, the following call may be used for 
large 3D models within program: 
 
writeSubdomainSgfdModel(modelName,x,y,z,t,[domains],’vp’,’func’,
vp,{},’rho’,’func’,rho,{}); 
 
writeSubdomainSfgdModel allows the user to call out how many netCDF files the domain input 
file should be spread out upon and where to break the domain to reduce any memory problems 
associated with a large model domain. In this particular call out, x, y, z, and t are defined as 
stated above. Domains is a matrix defining the domain location of the interface between the 
number of domains required. One row of data for each domain. This time vp and rho are still a 3-
D array of vp or rho values, but each is defined within a separate function file. This call may also 
be used in a similar fashion as writeSfgdModel for 2D files if large enough to warrant its use. 
 
Paracousti requires that several variables (and their associated dimensions) be defined within a 
model file. The required dimensions are ‘NX’, ‘NY’, ‘NZ’, ‘NT’ and ‘numCoord’. Besides 
‘numCoord’ which is always equal to 4, these dimensions are determined by the user based on 
the desired model size and length of time of simulation. ‘NX’, ‘NY’ and ‘NZ’ define the number 
of nodes in the x, y and z directions respectively. ‘NT’ gives the number of time steps to run the 
algorithm (this parameter may be overridden on the command line). Upon setting up a program 
file to build the input files for Paracousti, setting up the grid matrix is the first step. 
 
Several variables are required and are outlined below (dimension followed by variable type in 
parenthesis): 
minima: (numCoord; float) a four element array containing [x0, y0, z0, t0], which are the 

minimum values of x, y, z and t, respectively. Note that if the x-axis is oriented along the 
east-west direction and the y-axis is along the north-south direction, then x increases towards 
the east, y increases toward the north and z increases down into the earth. Values should 
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extend beyond the modeling area of interest by a minimum of five wavelengths dependent on 
the value of your maximum source frequency to comply with CPML boundary conditions. 
Minima may be negative counters with respect to the rest of the domain and may need to be 
increased to reduce interference in the model for domains with a greater amount of 
interactions.  

 
increments: (numCoord; float) a four element array containing [dx, dy, dz, dt], which are the 

spacing between x, y, z and t nodes. It is best if dx, dy and dz are equal. Dt is also known as 
the time step. The model extents will be (NX-1)*dx, (NY-1)*dy and (NZ-1)*dz and the total 
simulation time will be (NT-1)*dt. These values must be computed from characteristics of 
the acoustic sound speeds in the model and on desired frequency content. The dx should be 
defined as: 

 
dx = min(Vp)/max(Freq)/10 
 
for good wave simulation (see –hc flag below which could allow less stringent dx criteria). 
Vp is the acoustic sound speed. To obtain the desired level of accuracy, a minimum of 10 
grid points per desired source-wavelength are required. The 10 accounts for the number of 
grid points required. So, for example, for good wave simulation with a minimum Vp of 500 
m/s and a maximum frequency of 100 Hz, dx = 500/100/5 = 1 m. Note that the maximum 
frequency is defined as the frequency where the far-field amplitude spectrum is 1% of its 
peak value. The far-field spectrum is the doubly differentiated source waveform if an 
explosion source is utilized and the singly differentiated source waveform if a force source is 
utilized. The maximum dt is defined as (approximately) (if you use the –hc flag, see 
requirements for dt listed there): 
 
dt = dx/max(Vp)/2.04 
 
It is recommended that you use the MATLAB function cflDt() in order to find the optimal dt, 
especially if non-standard FD coefficients are used (-hc flag, below). To use this function, 
use: 
 
dt = CFLFraction*cflDt(dx,max(Vp),[c0 c1]) 
 
where CFLFraction should be between 0 and 1 (exclusive), and c0 and c1 are the inner and 
outer coefficients, respectively, for the FD operator. [c0 c1] is an optional argument. If it is 
not provided, standard Taylor Series coefficients, c0=9/8 and c1=-1/24 are assumed. 
However, it is worth noting that if memory is not a problem for your file size, a smaller dt  
than the calculated minima is recommended. 

 
x: (NX; float) a vector of x-axis values 
y: (NY; float) a vector of y-axis values 
z: (NZ; float) a vector of z-axis values 
time: (NT; float) a vector of time values 
 
The actual geophysical parameters are given in the variables below. All geophysical parameters 
must be defined on the same domain grid, step size included, as defined by the vectors of x, y, 
and z axis values.  
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Vp: (NZ,NY,NX; float) a 3-D array of the compressional-wave velocities in m/s. In C, the array 

is defined as a packed 1-D array with x varying the fastest, then y, then z. Velocities may be 
individually calculated based upon environmental conditions and location (temperature, 
salinity, suspended particulate count) and input into the array.  

Rho: (NZ,NY,NX; float) a 3-D array of the densities in kg/m3. Again, densities may be 
individually calculated based upon environmental conditions and location within the domain. 

 
3.2. Boundary Conditions 

The following are boundary conditions to damp unwanted reflections from the computational 
domain boundary and at least one of these conditions should be imposed. 
 
-bpc n R a k : convolutional PML with a thickness of n nodes, with parameters R, a and k. n is 

typically 10, R should be 0.001 or less, a should be pi*Fpeak, where Fpeak is approximately 
the dominant frequency of the source waveform, and k should be 1. 

 
The above command applies the same CPML parameters on all 6 sides of the model. Sometimes 
different CPML zones are desired for each side. This can be accomplished with the following 
command: 
-bpc6 nXmin Rxmin aXmin kXmin nXmax Rxmax aXmax kXmax nYmin Rymin aYmin kYmin 

nYmax Rymax aYmax kYmax nZmin Rzmin aZmin kZmin nZmax Rzmax aZmax kZmax : 
convolutional PML with a thickness of n nodes, with parameters R, a and k for each of the 
sides. All parameters have the same meaning as in the –bpc option except specified for the 
location in the simulation domain. 

 
The convolutional PML does a better job of damping unwanted reflections than the traditional 
PML, especially if the model is skinny in one dimension compared to other. This is the 
recommended boundary condition for most cases. If domain boundary reflections are still 
problematic, especially for very long, thin models, an MPML can be used with the indicated 
command shown below. 
 
-bpm n R a k xfac : multi-axial PML with a thickness of n nodes, and parameters R, a, k, and 

xfac. N is typically 10; R should be 0.001 or less, a should be pi*Fpeak where Fpeak is 
approximately the dominant frequency of the source waveform, k should be 1, and xfac, the 
cross-factor, should be between 0.01 and 0.05. 

 
Similar to –bpc6, each side of the model can be specified for an MPML using the –bpm6 flag. It 
has the same form as –bpc6, except with xfac added following kZmax.  
 

-bpm6 nXmin Rxmin aXmin kXmin nXmax Rxmax aXmax kXmax nYmin Rymin aYmin kYmin 
nYmax Rymax aYmax kYmax nZmin Rzmin aZmin kZmin nZmax Rzmax aZmax kZmax xfac : 
multi-axial PML with a thickness of n nodes, with parameters R, a and k for each of the 
sides. Note that this means that xfac cannot be varied by side; only the other parameters may 
be varied. 

 
For simple models the traditional PML can also be used: 
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-bp n R : traditional PML with a thickness of n nodes and parameter R. n is typically 10; R 
should be 0.01 or 0.001 in general. 

 
A pressure-free surface is a physical boundary condition that is used to simulate an air-water 
and/or air-earth interface that is flat. Precisely, it is the physical boundary condition that would 
occur if a vacuum replaced the air; however, it is a very good approximation for air and may be 
applied to the top of the model domain to approximate the air-water boundary. 
 
-bF : a pressure-free boundary condition for the top (minimum Z) flank of the model. The actual 

interface is placed at z = zmin+2*dz. Typically for these models, the z-axis is defined such 
that z = 0 is coincident with the pressure-free surface; thus, zmin would typically be set to -
2*dz. The boundary condition is enforced by forcing pressure at the interface to be zero at all 
time steps as well as all other conditions implied by this imposition. When the topography 
and sea surface are flat, this boundary condition provides the most accurate response. It can 
be used in combination with the CPML boundary, but not with the traditional PML 
boundary. 
 
3.3. Sound sources 

Sources are added to the command line. Both explosion and arbitrarily oriented force sources are 
available. First, a source time function must be defined. Ricker wavelet (doubly differentiated) 
and delta function (impulse) source time functions can be added with command line flags or the 
user can specify any arbitrary wavelet. A Ricker wavelet is nice for visualization since it is 
compact in both time and frequency, but it is not a very realistic source. A delta function source 
makes time slice visualization impossible, but the output is very flexible, since the output of one 
model run can then be convolved with any number of source time functions, instead of having to 
run a new model for each source time function. A source function of some type is required to 
induce any type of perturbations within Paracousti to allow a waver function to propagate down 
range. As Paracousti assumes that the background medium is not moving, any ambient noise 
recorded from an environment would need to be modeled separately and overlaid with the sound 
generated from a specific source or removed from any recorded data in order to compare 
modeled sound propagation to experimental data.  
 
To add a Ricker wavelet, add the following to the command line: 
 
-Sr Fpeak 
 
where Fpeak is the peak frequency of the desired Ricker wavelet. Note that the 1% level is about 
three times this peak frequency. 
 
To add a delta function wavelet, add the following to the command line: 
 
-SD 0 
 
This adds an impulse at time zero (the first time sample). The output from a delta function 
wavelet is useless without convolution with a reasonable source time function. A reasonable 
source time function is one that has its once- (force) or twice- (explosion) differentiated 
waveform at 1% of the peak amplitude spectrum at or below the maximum frequency that the 
model was designed for. Note: make sure that the model dt is multiplied into the convolution to 
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obtain accurate amplitudes. The trace output from a singular, unformatted delta function may be 
convolved after the simulation run, but not the slice data as it is taken in a point in time for a 
range of locations as compared to a singular location over the entire simulation time. 
 
To add an arbitrary waveform, add the following to the command line: 
 
-Sw filename.txt 
 
filename.txt is a plain text file containing two columns: t and amp. T is the time starting at t0 
with samples every dt. Amp is the amplitude of the source time function at that time. The 
amplitudes of the source time function are usually normalized so amp varies between -1 and +1. 
The length of file should be <=NT. If the file length is < NT, the source time function will be 
padded with zeros out to NT samples. Just as for any source time function convolved with a delta 
function, this source time function must be reasonable. In the far field, the source time function 
will be once-differentiated for a force source and twice-differentiated for an explosion source. 
For example, the source for an explosion source should be equal to the pressure twice integrated. 
These far field wavelets should have their 1% of peak amplitude spectrum at or below the 
maximum frequency that the model was designed for. Too much higher frequency energy leads 
to large numerical dispersion and inaccurate results. An example explosion source is provided 
below:  
 
A = c^2/(pi()*sf^2); 
amp(1:length(t)) = A*(1-cos(2*pi()*sf*t)); 
 
were c is the minimum sound speed for the system, sf is the sound source frequency, and t is the 
time vector. Note that the waveform has an amplitude of 1 Pa. The specific amplitude is 
specified again when the input files are written to a netCDF file, so that value may be changed to 
reflect any increased amplitude. It may also be left as one if the source file (text file) already 
includes the correct value of amplitude. 
 
In order to test the frequency content of your source time function, the following procedure is 
recommended. First, prepend and append a few zeros (say 3) to your discrete source time 
function. This simulates the implied initial and final conditions assumed by Paracousti for source 
time functions. If an explosion source is used, numerically differentiate this extended source time 
function twice; if a force source is used, do the differentiation once. Now, look at the Fourier 
Transform of this signal. Find the maximum frequency at which the amplitude spectrum is 
greater than 1% of the peak of the spectrum. 
 
The default interpretation of any source time function is that it is a time series of force for force 
sources, or of moment for moment sources. This means that the far field wavelet will be 
proportional to the single differentiation of a force source waveform or the double differentiation 
of the moment source waveform. In some cases, however, it may be more convenient to specify 
the moment rate waveform instead of the moment itself for moment sources. In this instance, the 
far field waveform would be the single differentiation of the input moment rate waveform. In 
order to specify that all following moment source waveforms are moment rate waveforms use the 
flag: 
 
-Smr 
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It is important to specify this flag before defining any of the source waveforms with –Sr, -SD, or 
–Sf flags to have them interpreted as moment rate waveforms. 
 
Once a source type or function is indicated, the type and location of the source must be specified. 
To add an explosion source, add the following to the command line: 
 
-Se x y z amp 
 
This adds an explosion source of amplitude amp (N-m) at position x, y, z. It is at this location 
that you may include the amplitude of the source function or leave it at one.  
 
To add a force type source, add the following to the command line: 
 
-Sfz x y z amp 
 
This adds a vertical force source of amplitude amp (N) at position x, y, z. To specify an x-
directed or y-directed for source use –Sfx or –Sfy, respectively. Note that the command –Sf 
filename.txt will still run initially thinking that the system is using a force source, but will 
inevitably cause the run to fail as a force source is not associated with a direct text file input. 
 

3.4. Receiver Data 
Receivers are designated locations where data will be recorded at a particular point in the model 
domain. They are only required for Trace type output and may be thought of as a sensor location 
for data collection. However, the model will run even if receivers are called and there is not a file 
specified to output any data. Slice output records all data for a model domain at a point in time, 
not a location. 
 

3.4.1. Trace – time history at a single or array of points 
The receiver geometry can either be supplied on the command line for simple layouts or in a 
plain text file for more complicated geometries. The command line allows additions of single 
receivers or of a uniform grid of receivers. Using a file allows completely arbitrary receiver 
placements for thousands of receivers if desired. Receiver location indicate where any trace data 
will be collected during the model run. 
 
For the file method, simply define a flat text file with three columns: x, y, and z. Each line will 
be a new receiver and the x, y and z values will be in the model coordinate system located on the 
predefined domain grid. If receiver locations lie between grid points, a cubic interpolation is by 
default applied to the calculated data. To include the file, add the following to the command line: 
 
-Rf3 type filename.txt  
 
where type is either “Pressure”, “3C”, “4C”, “Vx”, “Vy” or “Vz”, where 3C gives all three 
velocity components per receiver line and 4C also includes pressure. 
 
To add individual receivers, add the following to the command line: 
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-R type x y z  
 
This adds one receiver of type (see above) at position x, y, z in model coordinates. 
 
To add a uniform grid of receivers, add the following to the command line: 
 
-Rg type x0:dx:xf y0:dy:yf z0:dz:zf 
 
This adds a uniform grid of receivers of type (see above) on the grid defined by the MATLAB 
style vectors. For example, x0:dx:xf means x ranging from x0 to xf at an increment of dx; note 
that dx here is independent of the model dx. Also note that the grid may be manipulated to have a 
very low number of receivers as necessary if more data was required for a particular area after an 
initial run. However, the grid must contain more than a singular receiver to run. 
 
As a general note on the location of receivers, receivers may not be placed within an area in the 
simulation domain required to fulfil the requirements of a boundary condition. That would 
include any additional grid points required for a CPML, PML, pressure-free surface, etc. See 
Section 3.2 for a further description of the boundary conditions required for Paracousti. For that 
reason, it is recommended that the user start the indexing for the domain size at zero with 
indexing tied to any additional cells tied to boundary conditions increasing negatively on the left 
hand side of your domain; although this is not required. 
 
Other receiver command line options that may be useful are: 
 
-Rl : use trilinear interpolation instead of the default cubic interpolation for receiver points. This 

is important to do for receivers within about 2 grid nodes of any major model interface (such 
as the sea surface or sea bottom) because a cubic interpolator will reach across the interface 
to obtain interpolated values, whereas trilinear interpolation is more localized. 

 
-Ra : make acceleration traces instead of the default velocity traces 
 
-Rd : make displacement traces instead of the default velocity traces 
 
-Ro traceOutputFile.cdf : the trace output from the receivers will be output into this netCDF file. 

There are several dimensions and variables in this file, but we will discuss only those most 
pertinent to reading the file. Without a designated output file, Paracousti will not save and 
output the calculated data at each designated receiver location. Trace files are set up to record 
outputs from a singular designated receiver command. A separate run file will be required if 
output from two sets of receiver output geometries are required. Additionally, if two receiver 
geometries are specified with a singular output file, the second receiver geometry will 
overwrite the first in the output file. 

 
The ‘numReceivers’ dimension gives the number of receivers in the file. Note that this number is 
the total number of components and receivers, so, for example, if you added 100 3C receivers, 
numReceivers would equal 300. 
 
The following are pertinent variables: 
receiverX: (numReceivers) receiver X position 
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receiverY: (numReceivers) receiver Y position 
receiverZ: (numReceivers) receiver Z position 
 
receiverBx: (numReceivers) x-component of receiver, between 0 and 1. 
receiverBy: (numReceivers) y-component of receiver. 
receiverBz: (numReceivers) z-component of receiver. 
 
Note that a Vx receiver will have receiverBx=1.0 and receiverBy and Bz equal to zero, while a 
Vz receiver will have receiverBz=1.0 and the others equal to zero. Of course, for pressure 
receivers, these variables will be equal to zero and are not used. 
 
receiverType: (numReceivers) coded type of receiver. A pressure receiver will have a value of 2 

here, whereas other types will have a 1. 
 
receiverData: (numReceivers,NT) a 2-D array containing all of the trace data. Each row is a full 

timeseries. Output units are in MKS units, so velocities are in m/s and pressures are in 
Pascals. 

 
3.4.2. Slice – a planar snapshot at an instant in time 

As slices do not require a spatial designation, several commands exist to define whether a set 
number of slices is required or which particular times throughout the simulation run data would 
like to be required. Again, the type of data output must still be specified.  
 
-En N type plane pos: this will output N snapshots of type ground motion on the given plane at 

position pos evenly spaced in time. Type can be “Pressure”, “Vx”, “Vy” or “Vz”, indicating 
particle velocities in each of the three indicated directions. Plane can be “XY”, “XZ” or 
“YZ”. So, for example: -En 51 Pressure XZ 0, will output 51 snapshots of the pressure field 
in time over the total run time of the simulation on the XZ plane at y=0. Multiple –En lines 
are allowed per command line. 

 
-Et minT:Dt:maxT type plane pos: this will output snapshots of type ground motion on the given 

plane at position pos at the times specified by a MATLAB-style vector starting at time minT, 
stopping at time maxT, every Dt seconds. Note that output will be written from the nearest 
time-step to the specified times, i.e, there is no temporal interpolation performed. Times 
outside the max and min simulation time will not be written. Additionally, times must 
overlap with the original time vector and must be a multiple of the original designated time 
step written for the domain input files. Remaining parameters are as in –En. 

 
-Eo sliceFile.cdf: output the slices (snapshots) to the netCDF file sliceFile.cdf. All slices are 

stored in this file, so this file may become very large for big models with many snapshots. 
However, additional output files will be compiled and saved in order to collect all data 
required. Each slice is stored in an appropriately named variable in the file. The variable 
names are given as ‘planeType’, so the variable named ‘xzPressure’ would refer to pressure 
on the xz plane. These variables are 3-D arrays of dimension (N,planeDim1,planeDim2), 
where N is the number of slices, planeDim1 is the size of first of the plane dimensions and 
planeDim2 is the size of the second plane dimension. So, ‘xzPressure’ from the –En example 
above would have dimension (51,NZ,NX). Note that the ordering of the dimension sizes are 
the same as for the 3-D geophysical parameters. A second useful variable in the cdf file has 
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the same name as the slice variable above, but with ‘Time’ appended. This variable is of 
length N and gives the time at which the snapshot was taken. All variable information may 
be ascertained using a MATLAB function called ncinfo.  

 
-Ef maxPointsPerSliceFile: set the maximum number of points per variable name that can be 

written to a single file. The number of points is the size of the plane times the number of 
slices times the number of positions for that variable. Multiple slice output files will be 
created if the total number of points exceeds maxPointsPerSliceFile. It will alter the filename 
given by the –Eo flag by appending “_#” just prior to the “.cdf” ending, where # starts at 0 
and is incremented until all slice variable points are in files with less than or equal to 
maxPointsPerSliceFile. For example, given the –En line above, the variable is ‘xzPressure’. 
If that was the only ‘xzPressure’, the –En option given then would be only 1 position, at y=0. 
The total points for ‘xzPressure’ would be computed as NX*NZ*51*1 (where 51=N from the 
–En example, and 1 is the number of positions). If this total points exceeds 
maxPointsPerSliceFile then the slice output will be divided up among multiple output slice 
files, none having its number of points exceeding maxPointsPerSliceFile. The default is 
1000000000 (one billion) and maxPointsPerSliceFile should not exceed this number due to  
variable size restrictions. The variable size restrictions result in a maximum file size that is 
approximately 3.9 Gigabytes. 

 
3.4.3. Volumetric – a snapshot of the entire wavefield at an instant in time 

The entire wavefield can be captured at a single or multiple time steps. While this would allow 
the user to capture nearly any detail they are looking for, the data requirements are likely to be 
extreme. We do not recommend this as a standard output solution. Further details to be appended 
shortly. 
 
-W minT:Dt:maxT type: this will output snapshots of type for the full wavefield at the times 

specified by a MATLAB-style vector starting at time minT, stopping at time maxT, every Dt 
seconds. Note that output will be written from the nearest time-step to the specified times, i.e, 
there is no temporal interpolation performed. Times outside the max and min simulation time 
will not be written. Additionally, times must overlap with the original time vector and must 
be a multiple of the original designated time step written for the domain input files. 

 
3.5. Attenuation 

There is no acoustic attenuation (damping) by default. However, by specifying the following 
flags, attenuation will be turned on. While Section 7 describes the finite difference equations 
required to solve the velocity-pressure equations for Paracousti (Preston, 2016) for a full 
description on the implementation of attenuation in TDAAPS. TDAAPS is similar to Paracousti, 
but allows for moving media and the equations may be simplified for a stationary media. The 
attenuation model is allowed to have 3-D variations, but it is designed to work with a finite (and 
relatively small) number of unique attenuation models. Internally, an index keeps track of which 
of the attenuation models a particular grid point belongs to. The index method is also a way one 
can specify the full 3-D attenuation parameterization, but there is also another method that is 
based on ranges of sound speed in the 3-D model. For example, you can specify that one 
attenuation model applies to sound speeds between 1490 and 1500 m/s, and another attenuation 
model applies to sound speeds above 1500 m/s. This would mean that all nodes between 1490 
and 1500 m/s would have the same attenuation model, model1, and all nodes with sound speeds 
above 1500 m/s would have the same attenuation model, model2. Each attenuation model is 
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specified by a number of attenuation mechanisms, each of which gives the attenuation factor and 
relaxation frequency. Also, the adjustment factor that adjusts the input sound speeds to the sound 
speed at infinite frequency is unique to each attenuation model. However, for typical seawater 
conditions, this factor is very close to 1.0 and can be chosen as 1.0 if desired.  
 
In order to run Paracousti with attenuation, you must convert a specified attenuation loss (1/m = 
neper/m) as a function of frequency to the attenuation factors and relaxation frequencies for each 
attenuation model. The loss versus frequency curve may be available, but if not, the MATLAB 
function seawaterAtten.m may be used to compute the loss (1/m) as a function of frequency 
given temperature, depth, pH, salinity, and frequencies specified at which the loss factor should 
be computed. Once a loss vs. frequency curve is obtained, the MATLAB function 
acousticAttenSeek.m may be used to compute the values needed for Paracousti input for each 
attenuation model. Besides providing the frequencies and loss function, the sound speed at 
infinite frequency, the number of attenuation mechanisms desired (usually 2 is good), and 
optionally a reference frequency need to be described. The primary output is an array of length 
2*number of mechanisms, with adjacent terms being attenuation factor (a) followed by 
relaxation frequency (w). Thus, for a 2-mechanism attenuation model, the output would be 
[a1,w1,a2,w2]. Mechanisms are generally applied to any change in density with a two-
mechanism system referencing the values required for the water column and sediment layer in 
the overall simulation. The second output, if the reference frequency is input, is the factor that 
the sound speed at that reference frequency must be multiplied by in order to reach the infinite 
frequency sound speed. All these parameters are required in order to specify the attenuation 
model. 
 
In Paracousti an attenuation model is given by the following flag: 
 
-Q nR cFac w1 a1 w2 a2 … wnR anR: nR is the number of mechanisms, cFac is the factor that 

the sound speed must be multiplied by to go from the input sound speeds to infinite 
frequency sound speed. If the input sound speeds are for infinite frequency then cFac should 
be 1.0. w1…wnR are the relaxation frequencies for the nR mechanisms. A1…anR are the 
attenuation factors for the nR mechanisms. Note that if all a1…anR are 0.0 then it is 
equivalent to a non-attenuating medium.  

 
-QC minC maxC:  The preceding attenuation model (-Q flag) applies to nodes whose sound 

speeds are between minC and maxC. If either minC or maxC is ‘–‘ (two dashes in a row) then 
it means there is no limit in that direction. This flag is optional and the last given –Q flag will 
apply to all nodes not assigned thus far. Therefore, if you want every point in the model to 
use the same attenuation model, then all you need to give is the –Q flag. 

 
Note that the order of the –Q flags is important and that any –QC flag must be given before a 
new –Q flag is given. If a variable called Qindex is found in the netCDF model file, then the first 
–Q flag will correspond to index 0 nodes, the second to the index 1 nodes and so on. The Qindex 
variable is a 3-D array the same size as vp or rho each node with an integer between 0 and 
nQmodels-1, where nQmodels is how many –Q flags there will be on the command line. Each 
integer value correlates with a –Q flag indicating the attenuation factor and relaxation frequency 
in order to assign a particular attenuation to each grid point in the domain. Note that the –Q flag 
only indicates that attenuation is being applied to a model as specified but not at what location a 
particular attenuative value is applied; the Qindex matrix is required for spatial data. 
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4. Running Paracousti 
 
Now that the model geometry, receivers and sources are defined we are ready to run the 
program. This is a parallel code so we must use the command mpirun to tie in with the program 
openmpi, followed by the number of processors (-np) and the call indicating you would like to 
run the Paracousti executable.  This is dependent on the version or location of the executable.  
 

4.1. Additional Command-Line Parameters 
Besides those already mentioned there are several command line parameters that are necessary or 
can be used. Each of the following commands, if selected for a particular simulation, are written 
together in a continuous line of code written directly on the command line prompt or in a batch 
file that may be run on a command line. A batch file (text file) is recommended as it may be 
saved with any other files created for a particular run and used to reproduce data at a later date as 
well as the fact that it simplifies the code required to actively start running Paracousti. 
 
modelFile.cdf : (required) The model name is provided directly after the executable with no flag 
preceding it. 
 
-p px py pz : (required) this gives the domain processor decomposition of the model. There will 

be px processors in the x-direction, py in the y, and pz in the z. The code uses a master-slave 
node approach to decomposition, so the total number of processors requested on the mpirun 
is px*py*pz+1 = np. For numerical efficiency it is best if px is as small as possible. Note that 
the number of processors that may be allocated include those available due to hyper-
threading on a particular computer.  

 
-T t0:dt:tf : (optional) redefine the time vector for the simulation in MATLAB vector notation. 
 
-hc 4 c0 c1 : (optional) define the 4th order spatial finite-difference coefficients to be used instead 

of the default coefficients. C0 is the inner coefficient and c1 is the outer coefficient. Defaults 
values for these are from the Taylor series expansion coefficients for a 4th order accurate 
difference and have the values c0=9/8 and c1=-1/24. For correctly chosen values of these 
coefficients and time steps the run time for a given model can be greatly reduced for a given 
accuracy. For example, for a maximum phase speed error of 0.375%, coefficients c0 = 
1.14337598613568, c1 = -0.0490462530034956 run at 0.5 times the CFL limit provides the 
minimum run time. With this combination of parameters, dx can then be defined as: 
 
dx = min(Vp)/max(Freq)/gnpw 
 
where gnpw is the number of grid nodes per minimum wavelength, which in this case is 4.46 
instead of 10. This allows a much larger dx than defined above in the model section. Note 
that the CFL limit (maximum time step allowed for stable execution) does depend on these 
coefficients and dx. The CFL limit is: 
 
dtCFL = dx/max(Vp)/sqrt(3)/sum(absI) 
 
where c is [c0 c1]. To achieve the desired accuracy and optimal runtime, the dt used in the 
algorithm should be 0.5*dtCFL in the example stated above. For ease, it is recommended that 
one use the MATLAB function cflDt() as described above under increments. In this 
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particular example, CFLFraction in the description of cflDt() would be 0.5. For other levels 
of desired accuracy, the MATLAB function optimSpeedTest*.m can be used to find the 
coefficients and fraction of the CFL limit (CFLFraction) that minimizes run time. Note that 
Paracousti will run using the original time and spatial vector coefficients defined in the input 
files; it may just not be the most efficient run time available. 

 
This is followed by all the additional commands defining the boundary conditions, and input and 
output parameters. These can be specified in any order and multiple sound sources and output 
receiver types can be used. 
 
  



 

25 

5. Post-Processing Results 
 
Details to be appended shortly. Tutorials 1 and 3 provide some beginning and advanced details 

on accessing data and post-processing results from the output netCDF files. 
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6. Examples 
 

6.1. Example 1 
Considering all previous material discussed, an example acoustic run would be: 
 
mpir–n -np 7 ParAcousti baseline.c–f -p 1 2–3 -T 0:0.00019:0–1 -
bp 10 .–1 -Sr –0 -Sfz 0 0 0–1 -Rg 4C -40:5:40 0:0 10:–0 -Ro 
baselineAc.trace.cdf 
 
This call starts 7 processes, with the domain decomposition: 1 processor for the x dimension, 2 
processors in the y dimension and 3 processors in the z dimension. Use the model baseline.cdf 
for the medium parameters that were already written to an input file while calling ParAcousti as 
the executable. The timing given in this file is overridden so that the simulation time starts at 0 
and goes to 0.1 seconds at a time step of 0.00019 s. A PML boundary 10 nodes wide with a 
theoretical reflection coefficient of 0.01 will be applied to all 6 sides of the model. The source 
waveform is set to a 50 Hz Ricker wavelet and a vertically down-directed force source will be 
applied at the model point (0,0,0) with an amplitude of 1 N. A receiver grid of 4C receivers will 
be placed on a line from x = -40 m to 40 m in 5 m increments at y = 0 m and z = 10 m. Traces 
will be output into the file baselineAc.trace.cdf. 
 
A useful tool for finding out how a certain trace or slice file was created is to use ncdump. This 
is a utility program provided as part of the standard netCDF C/C++/fortran distribution. Using 
the call: 
 
ncdu–p -h filename.cdf 
 
This command will print out the dimensions, variables, and attributes of the file. For trace and 
slice files, there will be an attribute called “history” followed by the command line call that 
created the file. 
 

6.2. Example 2 
A second example for an acoustic run would be: 
 
mpir–n -np 13 ParAcousti baseline.c–f -p 1 3–4 -–F -bpc6 10 1e-6 
314 1 10 1e-6 314 1 10 1e-6 314 1 10 1e-6 314 1 2 1 314 1 10 1e-
6 314–1 -Sw source.t–t -Se 100 0 2–1 -Rg Pressure 100:10:4000 
0:0 0:1:–0 -Ro baselineAc.trace.c–f -En 1000 Pressure XZ–0 -Eo 
baselineAc.slice.cdf 
 
This call starts 13 processes, with the domain decomposition: 1 processor for the x dimension, 3 
processors in the y dimension and 4 processors in the z dimension. Use the model baseline.cdf 
for the medium parameters that were already written to an input file while calling ParAcousti as 
the executable. A pressure-free boundary is applied to the top of the domain and a convolutional 
PML boundary is applied to all six sides of the simulation domain as well. The thickness is equal 
to 10 nodes in the x, y, and zmax dimensions with 2 in the zmin dimension. The R parameter is 
set to 1e-6 in the x,y, and zmax dimensions with 1 in the zmin dimension. a and k are set to 314, 
which corresponds to a frequency of 100 Hz, and 1, respectively. The source waveform is set as 
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the textfile, source.txt, and an explosive source will be applied at the model point (100,0,2) with 
an amplitude of 1 N. A receiver grid of 4C receivers will be placed on a line from x = 100 m to 
4000 m in 10 m increments at y = 0 m and z = 0m to 40 m in 1 m increments. Traces will be 
output into the file baselineAc.trace.cdf. Over the simulation time designated in the input file, 
1000 pressure snapshots in time will be taken in the XZ plane where y = 0. The snapshots or 
slices will be output into the file baselineAc.slice.cdf where the standard maximum number of 
data points per file are used. 
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7. Theory 
7.1. Solution Equations 

 
A set of coupled first order linear partial differential equation known as the velocity-pressure 
system were derived from a linearization of continuity, Cauchy’s equations of motion, a 
constitutive relationship for stress, and a balance of entropy (Hafla, 2018): 
 
𝛿𝑣∗

𝛿𝑡 +
1
𝜌° ∇𝑝

∗ =
1
𝜌°
[𝑭 + ∇𝒎/01] (1a) 
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where 𝑣(𝒙, 𝑡) and 𝑝(𝒙, 𝑡) are the dependent variables of particle velocity and pressure 
perturbations, respectively; 𝜌(𝒙) is material density and c is sound speed. Either a * or ° indicate 
whether the term is caused by a perturbation or related to the ambient conditions, respectively. 
The right hand terms in these equations are body source terms: 𝑭 is the force density vector, 
𝒎/01 is the anti-symmetric portion of the moment density tensor and 𝒎:;< is the trace of the 
symmetric portion of the moment density tensor. The anti-symmetric and symmetric portions of 
the moment density tensors may also be considered as the deviatoric and isotropic portions, 
respectively. A moment tensor is a 3 × 3 tensor that describes the action of various combinations 
of force couples applied at a point in space. The isotropic portion, which represents a source of 
pressure and the hydrostatic portion of the moment density tensor, of the source is proportional 
to the trace of the moment tensor. Quite complex sources can be built by various combinations of 
these terms. Outside of the source region, the body source terms are zero, yielding a 
homogeneous system of partial differential equations. 
 
For this solution, the fluid is considered inviscid and adiabatic with the background fluid having 
a particle velocity of zero. It is further assumed that the background medium is stationary and 
that all background medium properties are constant in time until a sound perturbation is 
introduced into the system. Density perturbations caused by a sound wave are preserved through 
the derivation allowing the sound wave to propagate through a system even though the ambient 
fluid is considered incompressible for the velocity-pressure equations.  
 
An alternative method for initiating wave motion is by imposing time varying boundary 
conditions on the dependent variables (both velocity and pressure). These boundary conditions 
can be computed with another algorithm that can more accurately simulate non-linear or other 
near-source effects. This approach allows one to both compute the near-source effects to high 
accuracy and also to propagate these effects efficiently out into the far field. 
 
Note that both the densities and bulk moduli are functions of 3-D space but not of time. 
Arbitrarily complex 3-D distributions of medium properties are allowed including topography, 
bathymetry, acoustic sound speed variations due to temperature, salinity, and pressure in the 
water, in addition to sub-sea bed variations in earth structure. Also, stationary atmospheric 
models (i.e, without wind) can be utilized. Furthermore, purely acoustic simulations within the 
solid earth can be made where computational speed is essential, albeit at the cost of only 
generating compressional waves in these cases, whereas in reality, shear waves and all their 
related phenomena would be created as well. Careful treatment of high contrast interfaces, such 
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as air-earth, water-air, water-earth, using the order-switching technique outlined in Preston, et al. 
(2008) allows accurate and stable simulation across these boundaries. More simplistic models 
may also be developed for testing and evaluation purposes. A more detailed derivation can be 
found in (Aldridge, 2005; Hafla, 2018).  
 

7.2. Solution Methodology 
 
A finite difference scheme is utilized in order to solve the velocity-pressure system of Equation 
1. The numerical modeling domain is defined by a uniform Cartesian grid of points such as 
shown in Figure 2. Figure 3 zooms in on one cell of the domain with a size of dx × dy × dz. The 
eight corner nodes of this cell contain medium densities, bulk moduli and the pressure dependent 
variables. The three components of particle velocities reside on the twelve edges of the cell. This 
arrangement is known as a standard staggered grid. It allows central differencing of all the 
dependent variables to be used. The time axis is divided into equal segments of length dt, where 
the time step remains constant. Time is also staggered with pressure updates occurring on the 
integer time raster and velocity updating occurring on the half integer time raster. Again, this 
allows for more accurate central differencing. 

Figure 2: The computational domain (large box) represented by a 3-D uniformly spaced grid 
with nodes (grid points) indicated by black dots. 
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Fourth-order accurate finite differencing is utilized to approximate the spatial derivatives in 
Equation 1, while second-order accurate templates are used for the temporal derivatives. 
However, near high contrasts in medium parameters, such as at the air-water, air-earth or water-
earth interface, we use second-order spatial accuracy in the immediate vicinity of the interface to 
increase accuracy and preserve numerical stability (Preston et al., 2008). Time evolution uses an 
explicit in-time leap-frog method. The staggered grid and solution-step removes spurious 
oscillations within the solution. Due to the nature of a finite grid, the water-sediment layer 
interface of the domain is not continuously smooth, but rather steps at grid points. However, the 
grid size is dictated by the highest contributing frequency and so the interactions at the interface 
are well captured. The discretized equations for the finite difference solution with a full 
derivation are provided in (Preston, 2016); contributions from a moving ambient filed are 
included. For Paracousti, equations were simplified to omit background velocities, as they are 
significantly smaller than the speed of sound in underwater systems. The finite difference 
equations are shown below.  
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Figure 3:  Arrangement of dependent variables and medium parameters for one cell of the 
standard staggered grid. 
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−
1

𝜌L M𝑥: +
𝑑?
2 , 𝑦I, 𝑧HN

{𝑝?[𝑃Q(𝑥: + 𝑑?, 𝑦F, 𝑧H, 𝑡I) + 𝑃Q(𝑥: + 𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J) 

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥: + 2𝑑?, 𝑦F, 𝑧H, 𝑡I) 
+𝑃Q(𝑥: + 2𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J) − 𝑃Q(𝑥: − 𝑑?, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥: − 𝑑?, 𝑦F, 𝑧H, 𝑡I − 𝑑J)]} 

+
1

𝜌L(𝑥: +
𝑑?
2 , 𝑦I, 𝑧H)

𝑓?U (𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 ) 

  

𝑣V@ W𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 X = 𝑣V@W𝑥:, 𝑦F +

𝑑V
2 , 𝑧H, 𝑡I −

3𝑑J
2 X 

−
1

𝜌L A𝑥:, 𝑦I +
𝑑V
2 , 𝑧HK

{𝑝?[𝑃Q(𝑥:, 𝑦F + 𝑑V, 𝑧H, 𝑡I) + 𝑃Q(𝑥:, 𝑦F + 𝑑V, 𝑧H, 𝑡I − 𝑑J) 

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥:, 𝑦F + 2𝑑V, 𝑧H, 𝑡I) 
+𝑃Q(𝑥:, 𝑦F + 2𝑑V, 𝑧H, 𝑡I − 𝑑J) − 𝑃Q(𝑥:, 𝑦F − 𝑑V, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F − 𝑑V, 𝑧H, 𝑡I − 𝑑J)]} 

+
1

𝜌L(𝑥:, 𝑦I +
𝑑V
2 , 𝑧H)

𝑓VU (𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 ) 

 

(2b) 

𝑣YZ A𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I +

𝑑J
2 K = 𝑣YZ A𝑥:, 𝑦F, 𝑧H +

𝑑Y
2 , 𝑡I −

3𝑑J
2 K 

−
1

𝜌L M𝑥:, 𝑦I, 𝑧H +
𝑑Y
2 N

{𝑝?[𝑃Q(𝑥:, 𝑦F, 𝑧H + 𝑑Y, 𝑡I) + 𝑃Q(𝑥:, 𝑦F, 𝑧H + 𝑑Y, 𝑡I − 𝑑J) 

−𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H, 𝑡I − 𝑑J)] + 𝑞?[𝑃Q(𝑥:, 𝑦F, 𝑧H + 2𝑑Y, 𝑡I) 
+𝑃Q(𝑥:, 𝑦F, 𝑧H + 2𝑑Y, 𝑡I − 𝑑J) − 𝑃Q(𝑥:, 𝑦F, 𝑧H − 𝑑Y, 𝑡I) − 𝑃Q(𝑥:, 𝑦F, 𝑧H − 𝑑Y, 𝑡I − 𝑑J)]} 

+
1

𝜌L(𝑥:, 𝑦I, 𝑧H +
𝑑Y
2 )

𝑓YU(𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I −

𝑑J
2 ) 

(2c) 

 
Equations 2a – 2c represent the x, y, and z components of the particle velocity on a half step as 
defined previously with steps of i, j, k, and l correlating to x, y, z, and time, t, respectively. 𝑣 is 
the particle velocity, 𝑃 the perturbation pressure, 𝜌 the density, x, y, and z are the spatial 
locations, d the grid spacing, 𝑓 is a force source vector, and both 𝑝 and 𝑞 acting as memory 
variable containing staggered fourth-order accurate non-dimensional finite-difference 
coefficients. The pressure equation (4) is as follows along with required expansions (3a – 3c) for 
equations (2). Full descriptions of the force source vector and memory variables are provided in 
(Preston, 2016; Ostashev, 2005). With respect to the pressure equation, 𝜅 is the bulk modulus, 𝜔 
the relaxation frequency, 𝑅 and r are memory variables, and 𝑒 is the energy density source.  
 
 

+
1

𝜌L(𝑥: +
𝑑?
2 , 𝑦I, 𝑧H)

𝑓?U(𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 ) 

(3a) 
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+
1

𝜌L(𝑥:, 𝑦I +
𝑑V
2 , 𝑧H)

𝑓VU (𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 ) 

(3b) 

+
1

𝜌L(𝑥:, 𝑦I, 𝑧H +
𝑑Y
2 )

𝑓YU(𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I −

𝑑J
2 ) 

 

(3c) 

𝑃Q_𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J` = 𝑃Q_𝑥:, 𝑦F, 𝑧H, 𝑡I` 

−𝜅̂(𝑥:, 𝑦F, 𝑧H){𝑝?[𝑣?@(𝑥: +
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2 ) + 𝑣?@(𝑥: +

𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 ) 

−𝑣?@(𝑥: −
𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2 ) − 𝑣?@(𝑥: −

𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 )] 

+𝑞?[𝑣?@(𝑥: +
3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2 ) + 𝑣?@(𝑥: +

3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 ) 

−𝑣?@(𝑥: −
3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I +

𝑑J
2 ) − 𝑣?@(𝑥: −

3𝑑?
2 , 𝑦F, 𝑧H, 𝑡I −

𝑑J
2 )] 

𝑝V[𝑣V@(𝑥:, 𝑦F +
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 ) + 𝑣V@(𝑥:, 𝑦F +

𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 ) 

−𝑣V@(𝑥:, 𝑦F −
𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 ) − 𝑣V@(𝑥:, 𝑦F −

𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 )] 

+𝑞V[𝑣V@(𝑥:, 𝑦F +
3𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 ) + 𝑣V@(𝑥:, 𝑦F +

3𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 ) 

−𝑣V@(𝑥:, 𝑦F −
3𝑑V
2 , 𝑧H, 𝑡I +

𝑑J
2 ) − 𝑣V@(𝑥:, 𝑦F −

3𝑑V
2 , 𝑧H, 𝑡I −

𝑑J
2 )] 

+𝑝Y[𝑣YZ (𝑥:, 𝑦F, 𝑧H +
𝑑Y
2 , 𝑡I +

𝑑J
2 ) + 𝑣YZ (𝑥:, 𝑦F, 𝑧H +

𝑑Y
2 , 𝑡I −

𝑑J
2 ) 

−𝑣YZ (𝑥:, 𝑦F, 𝑧H −
𝑑Y
2 , 𝑡I +

𝑑J
2 ) − 𝑣YZ (𝑥:, 𝑦F, 𝑧H −

𝑑?
2 , 𝑡I −

𝑑J
2 )] 

+𝑞Y[𝑣YZ (𝑥:, 𝑦F, 𝑧H +
3𝑑Y
2 , 𝑡I +

𝑑J
2 ) + 𝑣YZ (𝑥:, 𝑦F, 𝑧H +

3𝑑Y
2 , 𝑡I −

𝑑J
2 ) 

−𝑣YZ (𝑥:, 𝑦F, 𝑧H −
3𝑑Y
2 , 𝑡I +

𝑑J
2 ) − 𝑣YZ (𝑥:, 𝑦F, 𝑧H −

3𝑑Y
2 , 𝑡I −

𝑑J
2 )]} 

−𝜅̂_𝑥:, 𝑦F, 𝑧H`b
1
2

c

def

𝑑J𝜔dg𝑝d@_𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J` + 𝑝d@_𝑥:, 𝑦F, 𝑧H, 𝑡I`h 

+𝑒̂(𝑥:, 𝑦F, 𝑧H, 𝑡I + 𝑑J) − 𝑒̂(𝑥:, 𝑦F, 𝑧H, 𝑡I) 

(4) 

 
In order to simulate an unbounded domain, we impose “absorbing boundary conditions” (ABC) 
on the flanks of the 3-D grid in order to suppress reflected energy. Two choices of absorbing 
boundary conditions are available: sponge (wavefield taper) or perfectly matched layers (PMLs). 
PMLs have been implemented instead of the sponge boundary as the performance is better of a 
layer of a similar thickness. The PML is an ABC that is theoretically perfect in that at the start of 
the PML zone, there is zero reflection back into the computational domain. This is not absolute 
in practice, but provides an adequate boundary condition for Paracousti (Cerjan et al., 1985; 
Beringer, 1994). Three PML options are provided: traditional PML, convolutional PML 
(CPML), and multi-axial PML (MPML). The MPML is the most general form, with the others 
being special cases. In a MPML, unlike the traditional or CPML, the wavefield is damped both 
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perpendicular and parallel to the domain face (Meza-Fajardo et al., 2008). This will produce 
some small reflection back into the computational domain, but in certain instances, such as long-
propagating grazing incidence waves, the MPML outperforms the other PML types. The CPML 
(Komatitsche and Martin, 2007) was designed to greatly reduce boundary and grazing incidence 
effects that troubled the traditional PML. This results in a negligible amount of energy that is 
reflected back inside the domain from the boundaries of the computational domain. For most 
problems, the CPML is recommended, but if grazing incidence waves appear in the solution, the 
MPML would be second. Only for very simple problems where grazing incidence wave will not 
be a concern should the traditional PML be considered. The grazing angle may also be manually 
reduced by increasing the size of the zone along the boundary of the domain dedicated to the 
boundary condition.  
 
Additionally, the ability to impose a pressure-free surface at the water-air or earth-air interface is 
available. Although not strictly true at these interfaces, it is a very good approximation. An 
alternative that may be used, however, is to simply assign air or vacuum properties above the 
water or earth. This latter approach must be used when there is topography since the pressure-
free surface implementation requires the air-earth and/or air-water interface to be flat. 
  



 

34 

 

8. Conclusions 
 
This brief report outlines the processes needed to use the 3-D massively parallel acoustic 
simulation code Paracousti. This code has the ability to perform 3-D full waveform acoustic 
simulations in solid, fluid, and (ideal) gaseous media with support for accurate high contrast 
interfaces between varying media types, including realistic topography, bathymetry, and 
subterranean voids. Although ideal, fixed fluid and gaseous media are assumed, it can 
incorporate attenuative losses that would be expected from physical mechanisms such as 
molecular dissipation. Furthermore, Paracousti has the capability to calculate the propagated 
sound field from multiple sound sources with unique profiles and these sources can have 
monopole and/or dipole contributions. As each finite-difference grid point allows for separate 
density and sound speed values, real world domains can be easily represented, evaluated and 
compared to analytical solutions and literature. As this program was developed for modeling 
MHK deployments, examples previously presented in this report and available for Paracousti are 
for modeling any underwater sound-source and its propagation. Additional modeling information 
is available at:  
 
https://github.com/SNL-WaterPower/Paracousti  
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10. Appendix I: List of Commands 
 
For the user’s convenience, the following section contains an alphabetical list of all the 
commands described within this document along with the page number where the original 
description of the command may be found. It also includes a brief description of each 
component. For further detail or suggestions on implementation, please reference the appropriate 
page.  
 

10.1. Commands: 
 
 Page  
-bF: a pressure-free surface boundary condition that is used to simulate an air-water 

and/or air-earth interface that is flat for the top (minimum Z) flank of the 
model. The actual interface is placed at z = zmin+2*dz. Typically for these 
models, the z-axis is defined such that z = 0 is coincident with the pressure-
free surface; thus, zmin would typically be set to -2*dz.  

 

15 

-bp n R : traditional PML boundary condition with a thickness of n nodes and 
parameter R. n is typically 10; R should be 0.01 or 0.001 in general. 

 

15 

-bpc n R a k : convolutional PML boundary condition with a thickness of n nodes, 
with parameters R, a and k. n is typically 10, R should be 0.001 or less, a 
should be pi*Fpeak, where Fpeak is approximately the dominant frequency of 
the source waveform, and k should be 1. 

 

14 

-bpc6 nXmin RXmin aXmin kXmin nXmax RXmax aXmax kXmax nYmin RYmin 
aYmin kYmin nYmax RYmax aYmax kYmax nZmin RZmin aZmin kZmin 
nZmax RZmax aZmax kZmax : convolutional PML boundary condition with a 
thickness of n nodes, with parameters R, a and k for each of the sides. All 
parameters have the same meaning as in the -bpc option except specified for 
the location in the simulation domain. 

 

14 

-bpm n R a k xfac : multi-axial PML boundary condition with a thickness of n 
nodes, and parameters R, a, k, and xfac. n is typically 10; R should be 0.001 or 
less, a should be pi*Fpeak where Fpeak is approximately the dominant 
frequency of the source waveform, k should be 1, and xfac, the cross-factor, 
should be between 0.01 and 0.05. 

 

14 

-bpm6 nXmin RXmin aXmin kXmin nXmax RXmax aXmax kXmax nYmin RYmin 
aYmin kYmin nYmax RYmax aYmax kYmax nZmin RZmin aZmin kZmin 
nZmax RZmax aZmax kZmax xfac: multi-axial PML boundary condition with 
a thickness of n nodes, with parameters R, a and k for each of the sides. See –
bpm command. 

 

15 

-Ef maxPointsPerSliceFile : sets the maximum number of points per variable name 
that can be written to a single file. The number of points is the size of the 
plane times the number of slices times the number of positions for that 
variable. Multiple slice output files will be created if the total number of 

20 
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points exceeds maxPointsPerSliceFile. It will alter the filename given by the -
Eo flag by appending “_#” just prior to the “.cdf” ending, where # starts at 0 
and is incremented until all slice variable points are in files with less than or 
equal to maxPointsPerSliceFile. The default is 1000000000 (one billion) and 
maxPointsPerSliceFile should not exceed this number due to netCDF variable 
size restrictions.  

 
-En N type plane pos : outputs N snapshots of type ground motion on the given 

plane at position pos evenly spaced in time. type can be “Pressure”, “Vx”, 
“Vy” or “Vz”, indicating particle velocities in each of the three indicated 
directions. plane can be “XY”, “XZ” or “YZ”.  

 

26 

-Eo sliceFile.cdf : output the slices (snapshots) to the netCDF file sliceFile.cdf.  
 

26 

-Et minT:Dt:maxT type plane pos: outputs snapshots of type ground motion on the 
given plane at position pos at the times specified by a MATLAB-style vector 
starting at time minT, stopping at time maxT, every Dt seconds. Remaining 
parameters are as in -En. 

 

20 

-hc 4 c0 c1 : define the 4th order spatial finite-difference coefficients to be used 
instead of the default coefficients. c0 is the inner coefficient and c1 is the 
outer coefficient. Defaults values for these are from the Taylor series 
expansion coefficients for a 4th order accurate difference and have the values 
c0=9/8 and c1=-1/24.  

 

23 

-np : number of processors. 
 

23 

modelFile.cdf : the model name provided directly after the executable with no flag 
preceding it. 

 

23 

-p px py pz : gives the domain processor decomposition of the model. There will be 
px processors in the x-direction, py in the y, and pz in the z. The code uses a 
master-slave node approach to decomposition, so the total number of 
processors requested on the mpirun is px*py*pz+1 = np.  

 

23 

-R type x y z : This adds one receiver of type is either “Pressure”, “3C”, “4C”, 
“Vx”, “Vy” or “Vz” at position x, y, z in model coordinates. A 3C gives all 
three velocity components per receiver line and 4C also includes pressure. 

 

18 

-Ra : make acceleration traces instead of the default velocity traces. 
 

19 

-Rd : make displacement traces instead of the default velocity traces. 
 

19 

-Rf3 type filename.txt : where type is either “Pressure”, “3C”, “4C”, “Vx”, “Vy” or 
“Vz”; A 3C gives all three velocity components per receiver line and 4C also 
includes pressure. filename.txt represents the text file containing three 
columns with the x, y, and z reciever position. 

 

18 
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-Rg type x0:dx:xf y0:dy:yf z0:dz:zf : Adds a uniform grid of receiver of type 
“Pressure”, “3C”, “4C”, “Vx”, “Vy” or “Vz”, defined by MATLAB style 
vectors. A 3C gives all three velocity components per receiver line and 4C 
also includes pressure. For example, x0:dx:xf means x ranging from x0 to xf 
at an increment of dx. 

 

18 

-Rl : use trilinear interpolation instead of the default cubic interpolation for receiver 
points. 

 

18 

-Ro traceOutputFile.cdf : output the trace data from the receivers to this netCDF 
file.  

 

19 

-SD 0 : add a delta function wavelet as a spike at time zero. 
 

16 

-Se x y z amp : add an explosion source of amplitude amp (N-m) at position x, y, z. 
 

17 

-Sfz x y z amp : add a force type source of amplitude amp (N-m) at position x, y, z. 
To specify an x-directed or y-directed for source use -Sfx or -Sfy, 
respectively. 

 

17 

-Smr : specifies that the following moment source waveforms are moment rate 
waveforms. 

 

17 

-Sr Fpeak : add a Ricker wavelet as a source, where Fpeak is the peak frequency of 
the desired Ricker wavelet. 

 

15 

-Sw filename.txt : add an arbitrary waveform, where filename.txt is a plain text file 
containing two columns: t and amp. t is the time starting at t0 with samples 
every dt. amp is the amplitude of the source time function at that time. 

 

16 

-T t0:dt:tf : redefine the time vector for the simulation in MATLAB vector 
notation. 

 

23 

-Q nR cFac w1 a1 w2 a2 … wnR anR: nR is the number of mechanisms, cFac is the 
factor that the sound speed must be multiplied by to go from the input sound 
speeds to infinite frequency sound speed. If the input sound speeds are for 
infinite frequency then cFac should be 1.0. w1…wnR are the relaxation 
frequencies for the nR mechanisms. a1…anR are the attenuation factors for 
the nR mechanisms. Note that if all a1…anR are 0.0 then it is equivalent to a 
non-attenuating medium.  

 

21 

-QC minC maxC:  The preceding attenuation model (-Q flag) applies to nodes 
whose sound speeds are between minC and maxC. If either minC or maxC is 
‘--' (two dashes in a row) then it means there is no limit in that direction.  

 

22 
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