
Paracousti
2D/3D modeling of underwater acoustics

Tutorial 3: Post-Processing for a Simple 2D Model

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National 

Nuclear Security Administration under Contract No. DE- NA0003525. 



Tutorial Objectives and Assumptions
n Objectives

• Introduce users to Paracousti
• Provide users a step-by-step guide to analyzing the data output from a 

simulation modeling a simple sound environment and noise source in 2D
n Assumptions

• Users have an understanding of acoustics and underwater acoustics
• Users have a familiarity with and access to MATLAB

w Users can follow along and perform pre-/post-process in most computer languages, but 
this tutorial uses MATLAB

w Python scripts are forthcoming
• Users have a familiarity with and access to Linux
• Users have completed Tutorial 1 and are familiar with the Pekeris Example



Tutorial Outline
n Introduction
n Definitions
n Paracousti Workflow

• Post-Processing
• MATLAB and NetCDF Files

n 2D Example: Pekeris Waveguide 
Output
• Data Output Options
• Output Visualization

w Time Slices
w Traces

n Best Practices
n More Information



Brief Introduction to Paracousti
n Paracousti

• 3D, time-domain, underwater acoustic propagation simulator which solves 
linearization of Cauchy equations of motion through coupled finite difference 
solution 

w 4th order spatial, 2nd order temporal

• Records time-varying pressure and particle velocities 
w Volumetrically: desired timesteps for full 3D space, extremely high storage cost
w Planar slice(s): desired timesteps, moderate to high storage cost
w Coordinate(s): instantaneous collection for length of simulation at a singular point or 

over a grid, low storage cost

!"∗
!$ +

1
'° )*

∗ = 1
'° , + )-

./0

!*∗
!$ + '° 1°

2) 3 "∗ = −1
3
!-678

!$



Definitions
n Acoustic Sound Speed [m/s]

• Medium sound speed as a function of space over the entire 3-D model domain
• Allowed to vary spatially
• Can be calculated based on environmental conditions

n Convolution Perfectly Matched Layer - CPML
• Boundary condition that absorbs energy on a domain face to prevent 

reflections back into domain
n Density [kg/m3]

• Medium mass density as a function of space over the entire 3-D model domain
• Allowed to vary spatially



Definitions
n Earth Model

• A reference to the model domain and grid spacing defined at the start of 
every simulation and required for the Paracousti input files

n NetCDF – Network Common Data Form
• An open standard for the binary storage of arrays of scientific data
• The data storage mechanism for Paracousti input and output files
• https://www.unidata.ucar.edu/software/netcdf/

n Receiver
• Location and parameters associated with a point in space where trace 

data is to be recorded

https://www.unidata.ucar.edu/software/netcdf/


Definitions
n Sound Pressure Level [dB] – SPL 

• A normalization of the root mean squared pressure or sound intensity, 
measured in decibels

• Specified relative to a reference pressure [Pa]
w 1 µPa for underwater acoustics

!"# = 20'()*+
",-.
",/0

n Source
• A time-varying pressure profile referenced to 1 meter from the source 

location of any amplitude
• Recommended to be normalized to an amplitude of � 1 Pa and scaled by 

a scalar amplitude during the model run 
• The source profile is not used by Paracousti (see Source Time Function)



Definitions
n Source Time Function – STF 

• The 1st or 2nd integral, with respect to time, of the source pressure profile for a 
directional or monopole source, respectively

• This is the input profile used by Paracousti to define the source
n Slice

• A planar output of particle velocity and/or pressure from Paracousti
• Recorded at desired time(s) 
• Aligned with the Cartesian grid defining the model

n Trace
• A pressure and/or particle velocity output from Paracousti at a single point
• Continuous in time
• Defaults to cubic interpolation if between grid points 



Definitions
n Transmission Loss (or Propagation Loss) [dB] – TL

• A measure of the reduction in sound intensity or pressure
• Similar to SPL, but the reference pressure is that of the source as 

measured 1 m away

!" = 20&'()*
+,-.

+./0,12345 67
n Volume Output

• Full velocity or pressure data output on the entire simulation 3D grid as a 
function of time

• Allows for full view of the evolving wavefield through time
• Incredibly large files



Paracousti Workflow
n Tutorial 3 assumes a prior run of Paracousti and a set of designated output files

• This tutorial deals with further analysis of out put data files defined as the post-
processing steps only from the Pekeris Example in Tutorial 1

n MATLAB is the presently supported pre-/post-processor
• However, many of the functions used in this tutorial exist in or can be quickly 

converted to Python using the NumPy and matplotlib libraries
n The files for this tutorial and other examples include:

• The Pekeris MATLAB scripts to indicate parameters associated with output files
• The NetCDF input cdf data files; output from Tutorial 1 provides the slice/trace files
• The MATLAB scripts used to perform simple post-processing of the results
• These can be found at: https://github.com/SNL-WaterPower/Paracousti

http://www.numpy.org/
https://matplotlib.org/
https://github.com/SNL-WaterPower/Paracousti


Workflow: Pre- and Post-Processing
n Pre-processing is the step that defines the model domain, the type of source(s), and 

how you would like to store any output data
• Paracousti provides many options for data output depending on the requirements 

of the example
• Various options will be discussed wherein

n Post-processing is the step of taking and manipulating the output data that 
Paracousti creates to analyze a problem
• Trace data can be analyzed similarly to any hydrophone recording
• Slice data provides an instantaneous snapshot of the sound field
• Volume output provides 



Workflow: MATLAB and NetCDF Files
n Because Paracousti requires an earth model written as a NetCDF file MATLAB 

provides many built in functions already to identify and access data in these files
n ncinfo(filename.cdf)

• Returns all of the information about the NetCDF data source and can be saved into 
a variable

n ncread(filename.cdf, variablename)
• Read data from a variable in the NetCDF file
• In addition to pre-defined variables, this will also include names for your output 

traces and slices
n ncdisp(filename.cdf)

• Displays all the groups, dimensions, variable definitions, and all attributes in the 
NetCDF data source as text in the Command Window



Workflow: MATLAB and NetCDF Files
n The information returned from ncinfo() is stored as a structure and 

can be accessed by appending deeper levels
>> finfo = ncinfo('baseline.cdf’)

n To see the variable names available
>> finfo.Variables.Name

n Which can then be used to store data from a variable
>> fminima = ncread('baseline.cdf', 'minima’)

finfo = 
struct with fields:

Filename: ..\baseline.cdf'
Name: '/'

Dimensions: [1×5 struct]
Variables: [1×9 struct]

Attributes: [1×2 struct]
Groups: []
Format: 'classic’ans =

'minima’

fminima =
4×1 single column vector
-50
-50
-50

0



2D Example: Pekeris Waveguide
n The problem

• Pekeris waveguide with a continuous, 
sinusoidal source in a 3D simulation

• See Tutorial 1 for full setup
n Domain setup

• Depending on output parameters, some 
output types require that they are assigned 
to actual grid locations over interpolation

• Initial time step parameters are required for 
temporal orientation of slices

• Additional space required for boundary 
conditions are indicated by (-)

100 m

c1= 1,500 m/s 
ρ1= 1,000 kg/m3

c2= 1,800 m/s
ρ2= 1,800 kg/m3

X

Z

0 m
Source Center Depth: 36 m

>> x = -160:1:4000
>> y = -160:1:160
>> z = -2:1:200
>> t = 0:0.0002:6



2D Pekeris Waveguide: 
Pre-Processing and Setup

n The MATLAB output script defines the run parameters by adding flags when 
executing Paracousti and do no strictly require any MATLAB capabilities
• This includes defining the boundary conditions, source, and simulation outputs
• Pekeris Example run script:

w mpirun –np 4 ParAcousti_RHEL6 pekeris3D.cdf -p 1 1 3 -bF -bpc6 10 1e-6 
62 1 10 1e-6 62 1 10 1e-6 62 1 10 1e-6 62 1 2 1 62 1 10 1e-6 62 1 -Sw
source.txt -Se 0 0 36 1 -Rg Pressure 5:100:3905 0:0 10:5:200 -Ro 
pekeris3D.trace.cdf -En 1000 Pressure XZ 0 -Eo pekeris3D.slice.cdf

• A grid of receivers (-Rg) was established at locations; 5:100:3905 0:0 10:5:200 for x, 
y, and z, respectively

• 1000 slices (-Eo) were requested in the XZ plane at y=0 over the total simulation run 
time

• All output data will be available in either the new *.trace.cdf and *.slice.cdf files



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Available trace commands for output
• Add one receiver of type data collected at any domain location, x y z

-R ‘Type’ x y z 

• Specify individual trace locations or automate multiple traces on a grid
-Rg ‘Type’ rxmin:dxr:rxmax rymin:dyr:rymax rzmin:dzr:rzmax

• Specify individual trace locations or multiple traces through text file
-Rf3 ‘Type’ filename.txt 

w The text file must specify the x, y, and z location of each reciever

• Range of x, y, and z values indicate locations of receivers in domain. These do not 
need to match domain grid

§ data is interpolated between grid cells and defaults to a cubic
• Receivers may not be located within space required for boundary conditions



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Available planar slices commands for output
• Defines total number of instantaneous snapshots in time can be collected on 

Cartesian planes over the entire simulation run time
-En N ‘Type’ ‘Plane’ ‘Position’

• Define an output of insantaneious snapshots in time at times specified by a MATLAB 
vector

-Et minT:Dt:maxT ‘Type’ ‘Plane’ ‘Pos’

• Slice output covers the entire defined domain dimensions, including boundary 
conditions

w Data calculated in the area beyond or defined spatially for a boundary condition should be 
omitted from a figure as it is not directly part of the solution area



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Available commands for output
• The trace output file

w Designates the file to collect the recorded data at each grid point defined by the receiver 
locations 

-Ro pekeris3D.trace.cdf

w Only one trace output file may be defined per run
• The slice output file

w Designates the file to collect the recorded data
-Eo pekeris3D.slice.cdf

w Multiple slice output files may be requested or defined per run



2D Pekeris Waveguide: Post-Processing
n Post-processing includes formatting and accessing any output files requested

• Slice and trace files are covered. Full volume output is omitted due to file size
• Pressure output type is used as velocities do not require additiontal formatting

n Determine the properties associated with any NetCDF output file; slice or trace files
• Instead of remembering how many slices we have, we can use ncinfo() is used to 

determine any slice file properties
>> slice_info = ncinfo(‘pekeris3D.slice.cdf')
>> [~,~,~,slice_length] = slice_info.Dimensions.Length

• we can look at slice_info.Dimensions.Name to determine which column we want the 
length from (the 4th)

• ncinfo may also be used to determine variable names as necessary within NetCDF files



2D Pekeris Waveguide: Post-Processing
n Slices may be selected singularly or averaged together over a period of time

• A steady state solution for a domain requires that the slice files be averaged over the 
period of solution time once the model reaches steady state

• We collect each pressure slice in order of time and store it in the 3D variable P, (Pa)
>> for i = slice_length;

P(:,:,i)=squeeze(ncread('pekeris3D.slice.cdf’,‘xzPressure',[1 1 
i],[inf inf 1]));

end

w P is comprised of 2 spatial dimensions and the 3rd is for each time snapshot

w squeeze() reduces the spatial order of the data into a 2D array

w The storage variable names will be organized by the data type and orientation you requested 
when you ran Paracousti. In this case, xzPressure

w For a singular slice, i = slice number

w To determine the simulation time the slice was taken at: time = (T/totalslice#)*i



2D Pekeris Waveguide: Post-Processing
• For slices averaged over a range

>> for i = slice_min:slice_max;
P(:,:,i-(slice_min – 1))=squeeze(ncread('pekeris3D.slice.cdf’,‘xzPressure',[1 1 

i],[inf inf 1]));
end

w slice_min and slice_max indicate the min and max counters for a range of slices

• Data is now in a matrix of pressure values in a particular selected plane (XZ) and may 
be formatted into a SPL or TL

• From here, we can quickly calculate the root mean squared pressure 
>> Prms=sqrt(mean(P.^2,3))

w Note that slice output is already a Pressure value in Pa

• And then calculate the SPL or TL
>> SPL = 20.*log10(Prms./1e-6)
>> TL = 20.*log10(Prms./P_1m)

w Where P_1m is the pressure 1 m from the source and may be obtained from the Trace files or source 
parameters



2D Pekeris Waveguide: Post-Processing
• Pressure data may additionally be averaged in water depth; for Pekeris:

>> for i = 1:xmax;
Pavg(i)= average(Prms(i,1:zmax));
end

w Where xmax indicates the range of values you would like to average over and zmax is the bottom depth

w All depth averaged values may then be converted to SPL or TL as required

• MATLAB provides a lot of plotting options, but an easy way to display the full color 

representation of the SPL array is to use imagesc()
>> imagesc(x,z,SPL’)

• For any 2-D plots, MATLAB’s plot() is sufficient



2D Pekeris Waveguide: Post-Processing

Source



2D Pekeris Waveguide: Post-Processing



2D Pekeris Waveguide: Post-Processing
n Trace data may be plotted for a single point in time; several plots may be overlaid

• Trace pressure data is output as Pa and each location may be plotted to easily check 
the validity of a solution

• We collect each pressure trace for each location and store it in the 3D variable P
• Each trace designation

>> for i=1:maxtrace
P = ncread('pekeris3D.trace.cdf','receiverData',[1 i],[inf 1]);
plot(time, P)
pause

end

w max trace is the total number of traces; i may also be equal to one value
w P is comprised of 1 spatial location in the xyz and in time, so it is already in a 2D array
w For some number of traces, the code will cycle through all of them and plot the output



2D Pekeris Waveguide: Post-Processing
n Traces are numbered by the x, y, z location designation. For traces in a grid, the 

identifier marches through each dimension consecutively 
• For a Trace number 157, the location would be (105 0 25) for (x y z)

n Trace data once brought in as a Pressure, may be converted to SPL or TL and plotted
• The root mean square of the pressure values (Prms) is not a necessary calculation as 

the data is for a singular location
• Then calculate the SPL or TL

>> SPL = 20.*log10(Prms(i)./1e-6)
>> TL = 20.*log10(Prms(i)./P_1m)
w Where P_1m is the pressure 1 m from the source and may be obtained from the Trace files or source 

parameters
w The P_1m may be asked for by finding a specific value 1 m from the source from a particular Trace location

• Traces may be plotted using the MATLAB command ‘plot(x,’SPL or TL’)’
w Multiple trace plots may be overlaid on the same MATLAB plot to compare locations



2D Pekeris Waveguide: Post-Processing



Best Practices: Slices
n Determining the best grid spacing based on output locations

• Domain size is defined based on area of interest and may be expanded until 
memory requirements become limiting due to the number of cells

• Note that along with any spacing requirements due to stability, it is also useful for 
the spacings to match those of the receivers for easy processing

n Bathymetry input and grid orientation may not match so should be monitored to 
make sure all plots correlate with respect to the x, y, and z directions

n Asking for a total number of slices is recommended over a time vector
n For plotting slices at a particular time, it is best to average that slice data over 3λ

• Every slice is tied to a particular point in time. Averaging over 3 wavelengths 
smooths the output and removes any noise

• The number of slices for three wavelengths depends on the source, total 
simulation time, and number of slices output



Best Practices: Traces
n Grid output is recommended and may be scaled to a very small number of traces

• Even for a singular area of interest, say for a sensor array location, trace data 
should be collected 1 m away in every direction to compare any energy disipation

• Grid output also allows for a consistent output across the entire domain. This 
allows for a check to make sure that the model is producing reasonable data while 
pulling from small (in comparison to slices) data files

• Traces should be collected 1 m from the source location to collect the data 
required for TL calculations and to monitor the source parameters



More Information
n More information, user manual, and example files can be found at: 

• https://snl-waterpower.github.io/Paracousti/
n Source code and executables can be found at: 

• https://github.com/SNL-WaterPower/Paracousti/
n Future documentation:

• Development of additional tutorials and example cases
• Additional pre- and post-processing options with Python 
• Other documentation:

w Preston, L. “TDAAPS2: Acoustic wave propagation in attenuative moving media,” Sandia National Laboratory, 
Alberquerque, Technical Report, pp. 158, 2016

w Hafla, E., Johnson, E., Johnson, C.N., Preston, L., Aldridge, D., and Robert, J.D. “Modeling underwater noise 
propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure system,” J. 
of Acoust. Soc. Of Am., 143(3242), pp. 12, 2018

https://snl-waterpower.github.io/Paracousti/
https://github.com/SNL-WaterPower/Paracousti/


Contact Information
n Sandia National Laboratories

• Program Lead
Jesse Roberts 
Water Power Technologies Dept.
jdrober@sandia.gov

• Lead Developer
Leiph Preston
Geophysics and Atmospheric Science 
Dept.
lpresto@sandia.gov

n Montana State University
• Application Lead

Erick Johnson
Mechanical Engineering Dept.
erick.johnson@montana.edu

• Graduate Researcher
Erin Hafla
Ph.D. Candidate
erinhafla@gmail.com


