
Paracousti
2D/3D modeling of underwater acoustics

Tutorial 1: Building a Simple 2D Model

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering 
Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National 

Nuclear Security Administration under Contract No. DE- NA0003525. 



Tutorial Objectives and Assumptions
nObjectives

• Introduce users to Paracousti
• Provide users a step-by-step guide to building, solving, and analyzing a 

simple sound environment and noise source

n Assumptions
• Users have an understanding of acoustics and underwater acoustics
• Users have a familiarity with and access to MATLAB

w Users can follow along and perform pre-/post-process in most computer 
languages, but this tutorial uses MATLAB

w Python scripts are forthcoming

• Users have a familiarity with and access to Linux



Tutorial Outline
n Introduction
n Definitions
n Paracousti Workflow

• Pre- and Post-Processing
• MATLAB and NetCDF Files

n 2D Example: Pekeris Waveguide
• Model Definition
• Pre-Processing and Setup
• Solving
• Determining Sound Pressure Levels

n Best Practices
n More Information



Brief Introduction to Paracousti
n Paracousti

• 3D, time-domain, underwater acoustic propagation simulator
• Modification of SNL’s TDAAPS (Time-domain Atmospheric Acoustic 

Propagation Suite)
• Assumes non-moving ambient medium with no prior stress, ideal fluid, zero 

shear/bulk viscosity, adiabatic
• Solves linearization of Cauchy equations of motion through coupled finite 

difference solution
w 4th order spatial
w 2nd order temporal
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Capabilities of Paracousti
n Able to represent

• Range-independent domains in 2D and 3D
• Spatial variation of water and bathymetric properties
• N number of distinct noise sources 
• Allows monopole and higher-order noise sources

n Records time-varying pressure and particle velocities 
• Volumetrically

w desired timesteps for full 3D space, extremely high storage cost
• Planar slice(s)

w desired timesteps, moderate to high storage cost

• Coordinate(s)
w instantaneous collection for length of simulation at a singular point or over a grid, 

low storage cost



Definitions
n Acoustic Sound Speed [m/s]

• Medium sound speed as a function of space over the entire 3-D model domain
• Allowed to vary spatially
• Can be calculated based on environmental conditions

n Convolution Perfectly Matched Layer - CPML
• Boundary condition that absorbs energy on a domain face to prevent 

reflections back into domain
n Density [kg/m3]

• Medium mass density as a function of space over the entire 3-D model domain
• Allowed to vary spatially



Definitions
n Earth Model

• A reference to the model domain and grid spacing defined at the start of 
every simulation and required for the Paracousti input files

n NetCDF – Network Common Data Form
• An open standard for the binary storage of arrays of scientific data
• The data storage mechanism for Paracousti input and output files
• https://www.unidata.ucar.edu/software/netcdf/

n Receiver
• Location and parameters associated with a point in space where trace 

data is to be recorded

https://www.unidata.ucar.edu/software/netcdf/


Definitions
n Sound Pressure Level [dB] – SPL 

• A normalization of the root mean squared pressure or sound intensity, 
measured in decibels

• Specified relative to a reference pressure [Pa]
w 1 µPa for underwater acoustics
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n Source
• A time-varying pressure profile referenced to 1 meter from the source 

location of any amplitude
• Recommended to be normalized to an amplitude of � 1 Pa and scaled by 

a scalar amplitude during the model run 
• The source profile is not used by Paracousti (see Source Time Function)



Definitions
n Source Time Function – STF 

• The 1st or 2nd integral, with respect to time, of the source pressure profile for a 
directional or monopole source, respectively

• This is the input profile used by Paracousti to define the source
n Slice

• A planar output of particle velocity and/or pressure from Paracousti
• Recorded at desired time(s) 
• Aligned with the Cartesian grid defining the model

n Trace
• A pressure and/or particle velocity output from Paracousti at a single point
• Continuous in time
• Defaults to cubic interpolation if between grid points 



Definitions
n Transmission Loss (or Propagation Loss) [dB] – TL

• A measure of the reduction in sound intensity or pressure
• Similar to SPL, but the reference pressure is that of the source as 

measured 1 m away
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Paracousti Workflow

Pre-processing Solution Post-processing



Paracousti Workflow
n Running Paracousti refers only solves an underwater acoustics problem 

• All of the problem setup and analysis is split into pre- and post-processing steps 
performed separately

n MATLAB is the presently supported pre-/post-processor
• However, many of the functions used in this tutorial exist in or can be quickly 

converted to Python using the NumPy and matplotlib libraries
n The files for this tutorial and other examples include 

• The MATLAB scripts to define the problem and create a NetCDF input file
• The NetCDF input file
• The MATLAB scripts used to perform simple post-processing of the results
• These can be found at: https://github.com/SNL-WaterPower/Paracousti

http://www.numpy.org/
https://matplotlib.org/
https://github.com/SNL-WaterPower/Paracousti


Workflow: Pre- and Post-Processing
n Pre-processing is the step that defines the model domain, the type of source(s), and 

how you would like to store any output data
• Paracousti requires

w An environmental domain (earth model) as a NetCDF file
w At least one text file detailing the time history of a noise source
w Command-line flags indicating additional boundary, source, and output criteria

• MATLAB provides many tools to quickly manage arrays of environmental 
parameters, interpolate measured data into a model domain, and create the input 
NetCDF file

n Post-processing is the step of taking and manipulating the output data that 
Paracousti creates to analyze a problem
• Trace data can be analyzed similarly to any hydrophone recording
• Slice data provides an instantaneous snapshot of the sound field



Workflow: MATLAB and NetCDF Files
n Because Paracousti requires an earth model written as a NetCDF file 

MATLAB provides many built in functions already to write and access data 
in these files

n The provided writeSgfdModel.m function uses nccreate() and 
ncwrite() to build the full input file for Paracousti
• No need to develop this functionality separately

n The provided writeSubdomainSgfdModel.m is similar and builds 
multiple input files when memory constraints restrict file size
• Generally used for large 3D simulation runs
• Requires user to specify the number of splits to the domain
• The maximum size for a single NetCDF file is ≈ 2.6 GB



Workflow: MATLAB and NetCDF Files
n ncinfo(filename.cdf)

• Returns all of the information about the NetCDF data source and can be 
saved into a variable

n ncread(filename.cdf, variablename)
• Read data from a variable in the NetCDF file
• In addition to pre-defined variables, this will also include names for your 

output traces and slices



Workflow: MATLAB and NetCDF Files
n The information returned from ncinfo() is stored as a structure and 

can be accessed by appending deeper levels
>> finfo = ncinfo('baseline.cdf’)

n To see the variable names available
>> finfo.Variables.Name

n Which can then be used to store data from a variable
>> fminima = ncread('baseline.cdf', 'minima’)

finfo = 
struct with fields:

Filename: ..\baseline.cdf'
Name: '/'

Dimensions: [1×5 struct]
Variables: [1×9 struct]

Attributes: [1×2 struct]
Groups: []
Format: 'classic’ans =

'minima’

fminima =
4×1 single column vector
-50
-50
-50

0



• Modeled as 3D
w 1D is also possible for range-independent problems

2D Example: Pekeris Waveguide
n The problem

• Determine the SPL in a Pekeris
waveguide with a repeating source.

n Model properties
• One monopole source

w Oriented along the LHS of domain
w ! = 20 Hz, amplitude = 1 Pa

• 2-layer waveguide
• Each domain has distinct and constant 

properties
• Flat and smooth interface

100 m

c1= 1,500 m/s 
ρ1= 1,000 kg/m3

c2= 1,800 m/s
ρ2= 1,800 kg/m3

X

Z

0 m
Source Center Depth: 36 m

100 m

c1= 1,500 m/s 
ρ1= 1,000 kg/m3

c2= 1,800 m/s
ρ2= 1,800 kg/m3

X

Z

0 m
Source Center Depth: 36 m



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Domain setup
• Create vectors that define 

w The desired spatial discretization along their respective axes x, y, and z 
w The simulation’s time history
w These are of the form

>> x = min : step_size : max

• While the domain extents are often sufficient to determine these sizes, ensure 
additional grid points are available when

w Inserting a pressure-free boundary
w Near an interface between changing materials
w Sources and/or receivers are near a boundary

>> x = -160:1:4000
>> y = -160:1:160
>> z = -2:1:200
>> t = 0:0.0002:6

While we’re only solving a ”2D” problem, y has 
large enough dimensions to minimize low angle 

grazing from the very low frequency



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Domain setup: Environmental properties
• Define a single array for both the density (rho) and sound speed (vp) of the 

domains
w Changes in values determine a difference in medium properties

§ Such as defining the location of any changes in bathymetry
w For a constant water layer on top of sediment, define arrays of values based on the grid 

location
>> for i = 1:length(z)

if z(i) <= 100
vp(:,:,i) = 1500; rho(:,:,i) = 1000;

else 
vp(:,:,i) = 1800; rho(:,:,i) = 1800;

end; 
end

The water surface starts at z=0 and gets 
larger in depth, so anything less than 

100 m is within the water column

These arrays represent the variability of the parameters in the 
3D model domain, but we are only changing values here based 
upon the depth (:,:,i) since the bottom is constant and flat



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Domain setup: Writing the domain input file
• This defaults to a 3D model, unless specified otherwise
• Uses the previously defined spatial and time vectors, x, y, z, and t and 

the rho and vp arrays that define the density and sound speed for 
every grid point within the domain

• The ‘vp’ and ‘rho’ flags designate the model data following, while 
the data variable name can be changed to reference the previously 
defined array

>> writeSgfdModel(‘pekeris3D.cdf‘, x, y, z, t, 'vp', vp, 'rho', rho)

• This domain model can be reused to solve problems with different 
sources and boundary conditions



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Source setup: Defining a source profile
• Define the source parameters (single)

w Desired regular frequency (sf) in [Hz]
w Scaling amplitude (amp) in [-], 
w Cartesian location ([sx,sy,sz]) in [m]

• Create the source time function for Paracousti
w For a repeating harmonic source defined by a pressure of P = cos(2()*)
w The double integral for an explosive monopole source that can be differentiated into a smooth 

continuous function is then
>> stf = c^2/(pi()*sf^2)*(1-cos(2*pi()*sf*t))

w We recommend creating a source time function with a unity amplitude and scaled by amp

c is the sound speed at the source location

this includes terms from the 
integration AND a required 

scaling factor

sf = 20
amp = 1
[sx, sy, sz] = [0, 0, 36] 



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Source setup: Writing the input file
• Write a new input file for each source as a tab-delimited text file with no header 

information
>> sourceTable = table(t’,stf’)
>> writetable(sourceTable,‘sourcepekeris.txt’, ...

'writeVariablenames',0,'delimiter','\t’)

• This source file is called later when running Paracousti



2D Pekeris Waveguide: 
Pre-Processing and Setup

n While building the domain and source time function are easily accomplished with 
MATLAB, the remainder of the setup is finished by adding flags when executing 
Paracousti and do no strictly require any MATLAB capabilities
• This includes defining the boundary conditions, source, and simulation outputs
• However, we encourage the user to include these within their MATLAB scripts to

w Conveniently repeat and change a simulation
w Provide a record of what conditions were run
w Avoid fat fingering a command
w Automate performing a batch of simulations



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Defining the boundary conditions 
• The CPML is defined by 4 parameters for each six boundaries and specified by

-bpc6 nXmin RXmin aXmin kXmin nXmax RXmax aXmax kXmax nYmin RYmin aYmin kYmin nYmax
RYmax aYmax kYmax nZmin RZmin aZmin kZmin nZmax RZmax aZmax kZmax

• For the 2D Pekeris Waveguide
-bpc6 10 1e-6 62 1 10 1e-6 62 1 10 1e-6 62 1 10 1e-6 62 1 2 1 62 1 10 1e-6 62 1

• A pressure-free boundary is applied to the air/water interface at z = 0 with –bF
w This overwrites the CPML on that boundary
w We could alternatievly add sufficient grid points to the air domain with a density = 0, leaving the 

CPML boundary condition

n is the CMPL thickness and we recommend 10
R <= 0.001
a = !"peak, where "peak is the dominant frequency of the source 
k = 1 



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Defining the source
• Indicate the source profile is defined through the input file written 

previously
• This source is a monopole (explosion) source at the already defined 

location with an additional scaling amplitude, amp
-Sw sourcepekeris.txt
–Se sx sy sz amp

• Multiple sources can be added in sequence with individual locations and 
source text files as necessary



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Defining traces as outputs
• You can specify individual trace locations or automate multiple traces on a grid

-Rg ‘Type’ rxmin:dxr:rxmax rymin:dyr:rymax rzmin:dzr:rzmax

w Type = data collected, e.g. pressure
w Range of x, y, and z values indicate locations of receivers in domain. These do not need to 

match domain grid
§ data is interpolated between grid cells and defaults to a cubic

w dxr, dyr, dzr are the step size between receiver locations
w For the 2D Pekeris Waveguide

-Rg Pressure 5:100:3905 0:0 10:5:200

• The trace output file
w Designates the file to collect the recorded data at each grid point defined by the receiver 

locations 
-Ro pekeris3D.trace.cdf

In this case no data is collected 
along the y-dimension



2D Pekeris Waveguide: 
Pre-Processing and Setup

n Defining planar slices as outputs
• Instantaneous snapshots in time can be collected on Cartesian planes

-En N ‘Type’ ‘Plane’ ‘Position’

w N = number of snapshots in time evenly spaced over the total model run time
w Type = data collected, e.g. particle velocity components vx, vy, vz
w Plane = 2D plane data can be collected on each of the three planes, i.e. XY, XZ, YZ
w Position = Location along the third axis the snapshot will occur.
w N should divide evenly into the model run time
w For the 2D Pekeris Waveguide

-En 1000 Pressure XZ 0

• The slice output file
w Designates the file to collect the recorded data

-Eo pekeris3D.slice.cdf

This collects 1000 pressure snapshots on the 
XZ-plane at y=0



2D Pekeris Waveguide: Solving
n Run Paracousti from the terminal by typing the whole model setup

mpirun -np N Paracousti filename.cdf -p px py pz boundary, source, outputs

w -np N denotes N number of processors to be used in the solution
w -p px py pz determines the parallelization breakdown in each direction, where 

N = px*py*pz+1
w boundary, source, outputs consist of all of the additional flags required to define a 

model run

• The complete 2D Pekeris Waveguide is run with
mpirun –np 4 ParAcousti_RHEL6 pekeris3D.cdf -p 1 1 3 -bF -bpc6 10 1e-6 62 1 10 1e-
6 62 1 10 1e-6 62 1 10 1e-6 62 1 2 1 62 1 10 1e-6 62 1 -Sw source.txt -Se 0 0 36 1 
-Rg Pressure 5:100:3905 0:0 10:5:200 -Ro pekeris3D.trace.cdf -En 1000 Pressure XZ 
0 -Eo pekeris3D.slice.cdf

• Note that after Paracousti has completed its run all output data will be available in 
either the new *.trace.cdf and *.slice.cdf files



2D Pekeris Waveguide: Post-Processing
n To determine the sound pressure level from the model we need to access all of the 

pressure values we have recorded on the slices
• Instead of remembering how many slices we have, we can use ncinfo() is used to 

determine any slice file properties
>> slice_info = ncinfo(‘pekeris3D.slice.cdf')
>> [~,~,~,slice_length] = slice_info.Dimensions.Length

• We collect each pressure slice in order of time and store it in the 3D variable P
>> for i = slice_length;

P(:,:,i)=squeeze(ncread('pekeris3D.slice.cdf’,‘xzPressure',[1 1 
i],[inf inf 1]));

end

w P is comprised of 2 spatial dimensions and the 3rd is for each time snapshot
w squeeze() reduces the spatial order of the data into a 2D array
w The storage variable names will be organized by the data type and orientation you requested 

when you ran Paracousti. In this case, xzPressure

we can look at slice_info.Dimensions.Name to 
determine which column we want the length from (the 4th)



2D Pekeris Waveguide: Post-Processing
• From here, we can quickly calculate the root mean squared pressure 

>> Prms=sqrt(mean(P.^2,3))

w Note that slice output is already a Pressure value in Pa

• And then calculate the SPL
>> SPL = 20.*log10(Prms./1e-6)

• MATLAB provides a lot of plotting options, but an easy way to display the full color 
representation of the SPL array is to use imagesc()

>> imagesc(x,z,SPL’)



2D Pekeris Waveguide: Post-Processing

Source



Best Practices: Grid Size
n Determining the best grid spacing based on model parameters 

• Domain size is defined based on area of interest and may be expanded until 
memory requirements become limiting due to the number of cells

• Best if the grid step size is the same size in all directions, i.e. dx=dy=dz
• We recommend that a minimum of 10 points per the smallest source wavelength 

is used 
• Ensure that the grid spacing is no larger than

>> dx=min(vp)/sf/10



Best Practices: Timestep
n Determine the timestep based on model parameters

• With an explicit finite difference scheme, solution stability depends on the 
timestep size

w This will give erroneous results
w Resulting errors in the model can cause the system to crash 

• Ensure that the timestep is no larger than
>> dt=dx/max(vp)/2.04

w The 2.04 is a product of the finite difference coefficients used
n As this is a transient simulation, do not neglect having a sufficiently large solution 

time in order to capture the correct problem statistics

• That is, a steady state is not achieved in less than ()*+,- ./-012
3*+../31 3)4-( 35//(



Best Practices: Boundary Conditions
n The pressure free boundary condition

• Applied across the top of the model to simulate an air-water and/or air-earth 
interface 

• The interface is placed at z = Zmin + 2*dz
w Top of water surface is z = 0, with positive z increasing in depth
w The additional 2*dz spacing is required from the finite difference scheme
w This means Zmin should be defined at -2*dz

n The CPML requires a buffer zone of a minimum 10*dx or 10*dy
• This absorbs sound leaving the domain and prevents reflections
• High frequency sources may require larger buffer zones



More Information
n More information, user manual, and example files can be found at: 

• https://snl-waterpower.github.io/Paracousti/
n Source code and executables can be found at: 

• https://github.com/SNL-WaterPower/Paracousti/
n Future documentation:

• Development of additional tutorials and example cases
• Additional pre- and post-processing options with Python 
• Other documentation:

w Preston, L. “TDAAPS2: Acoustic wave propagation in attenuative moving media,” Sandia National Laboratory, 
Alberquerque, Technical Report, pp. 158, 2016

w Hafla, E., Johnson, E., Johnson, C.N., Preston, L., Aldridge, D., and Robert, J.D. “Modeling underwater noise 
propagation from marine hydrokinetic power devices through a time-domain, velocity-pressure system,” J. 
of Acoust. Soc. Of Am., 143(3242), pp. 12, 2018

https://snl-waterpower.github.io/Paracousti/
https://github.com/SNL-WaterPower/Paracousti/


Contact Information
n Sandia National Laboratories

• Program Lead
Jesse Roberts 
Water Power Technologies Dept.
jdrober@sandia.gov

• Lead Developer
Leiph Preston
Geophysics and Atmospheric Science 
Dept.
lpresto@sandia.gov

n Montana State University
• Application Lead

Erick Johnson
Mechanical Engineering Dept.
erick.johnson@montana.edu

• Graduate Researcher
Erin Hafla
Ph.D. Candidate
erinhafla@gmail.com


