Source code for source_release.prime_incubation

import numpy as np
from   prime_utils import lognorm_pdf, lognorm_cdf

def _incubation(time,incubation_median,incubation_sigma):
    """
    Compute the probability density function of the incubation rate,
    currently modeled as log-normal distribution
    """
    time = np.atleast_1d(time)
    vals = np.zeros_like(time)
    I = np.where(time>=0)
    vals[I] = lognorm_pdf(time[I],incubation_sigma,scale=incubation_median)
    return vals

def _incubation_cdf(time,incubation_median,incubation_sigma):
    """
    Compute the cumulative density function of the incubation rate,
    currently modeled as log-normal distribution
    """
    time = np.atleast_1d(time)
    vals = np.zeros_like(time)
    I = np.where(time>=0)
    vals[I] = lognorm_cdf(time[I],incubation_sigma,scale=incubation_median)
    return vals

[docs] def incubation_fcn(time,incubation_median,incubation_sigma,is_cdf=False): """ Computes the incubation rate Parameters ---------- time: float, list, or numpy array instances in time for the evaluation of the incubation rate model incubation_median: float median of the incubation rate model incubation_sigma: float standard deviation of the incubation rate model is_cdf: boolean (optional, default False) select either the CDF of the incubation rate model (True) or its PDF (False) Returns ------- vals: numpy array incubation rates corresponding to the time values provided as input parameters """ if is_cdf: vals = _incubation_cdf(time,incubation_median,incubation_sigma) else: vals = _incubation(time,incubation_median,incubation_sigma) return vals