

InterSpec Familiarization

Will Johnson – wcjohns@sandia.gov

20220420

Help/Support: InterSpec@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SAND2022-4588 TR

² Todays goals:

- Get you comfortable with opening and viewing spectrum files in InterSpec
- Get you familiar with basic peak-fitting, nuclide ID, energy calibration
- Have you be able to fit activity and shielding for a spectrum

Please work-along, or tinker around with InterSpec as we go along today

The example spectrum files at https://sandialabs.github.io/InterSpec/tutorials/

Some general information

This presentation uses InterSpec v1.0.10_rc3, but v1.0.9 is acceptable

- Windows, Linux, macOS: <u>http://github.com/sandialabs/InterSpec/releases/</u>
 - Windows Install: unzip downloaded file, and place resulting directory where ever you would like (e.x., C:\Program Files\InterSpec); manually pin to start-menu and associate file-types
- iPhone, iPad, Android, macOS: search the app-store for "InterSpec"

InterSpec is completely open-source (LGPL v2.1), and code available from:

- <u>https://github.com/sandialabs/InterSpec</u>
- <u>https://github.com/sandialabs/SandiaDecay</u>
- <u>https://github.com/sandialabs/SpecUtils</u>

Support, bug reports, and requests: <u>InterSpec@sandia.gov</u>

Todays presentation should take ~1 hour

general use

.

5 InterSpec Capabilities:

Quickly view spectrum files and fit peaks

Perform nuclide ID

Determine nuclide activities, shielding amounts, isotopics, and ages

InterSpec Capabilities (continued):

6

Perform nuclide decay calculations, get reference information, export inf as CSV, etc

Develop detector response functions (efficiency + FWHM)

1/² Calculator × Use two measurement at different locations to find distance to an unseen source. E.g. when the source is behind a wall. Near Measurement Intensity: Near Measurement Intensity: 100 ♀ Far Measurement Intensity: 13 ♀ Background Intensity (optional): 1 ♀ Distance between measurements: 2 ♀ Power Law Low Scatter or using Peak Area, 1/r² ∨ Dist. near measurement to source: 1.068 Use the same units for near, background, and far measurements. 2 ? Close

7 InterSpec Capabilities (continued):

Flexible gamma dose calculations Activity $\leftarrow \rightarrow$ Dose Activity $\leftarrow \rightarrow$ Distance Etc.

Distance: 100 cr	n	E Detector: La	Br 10%
Energy (keV)	🔺 Peak CPS	- Flux (γ/cm ² /s)	× γ/4n/s
122.17	1.363 ± 0.1	0.001461 ± 0.0	1.836e+04 ± 1531.7
244.83	1.377 ± 0.1	0.001721 ± 0.0	2.162e+04 ± 1693.2
344.04	6.401 ± 0.1	0.01078 ± 0.0	1.355e+05 ± 2792.7
411.81	0.5318 ± 0.0	0.001086 ± 0.0	1.365e+04 ± 23.7
443.22	0.5317 ± 0.0	0.001179 ± 0.0	1.482e+04 ± 22.4
778.98	2.02 ± 0.1	0.008339 ± 0.0	1.048e+05 ± 4058.0
866.11	0.5508 ± 0.1	0.002544 ± 0.0	3.197e+04 ± 2960.2
964.39	1.845 ± 0.1	0.009523 ± 0.0	1.197e+05 ± 4315.1
1086.17	1.512 ± 0.2	0.0088 ± 0.0	1.106e+05 ± 15948.6
1112.41	1.763 ± 0.2	0.01051 ± 0.0	1.321e+05 ± 15543.2
1409.47	2.336 ± 0.1	0.01765 ± 0.0	2.218e+05 ± 5284.8
Copy To Clipboard	1		show more info

Gamma flux calculator

Convert Ex: 5 ME sievert	between radiation related units. 3q, 2 nCi, 1.2rad, 15E-3gy, 0.2mrem, 8feet, 9milli-	
Input:	5 MBq	٦
Output:	135.1 uCi	

Convert radiation relevant units

And more!

(and also more under active development)

Energy:	141	keV		
Material/mass-formula	Pine wood			
Total att. cross section	0.1434	cm²/g		
Compton	0.1427	cm²/g		
Rayleigh	0.002313	cm²/g		
Photoelectric	0.000608	cm²/g		
Pair production	0	cm²/g		
Mass avrg atomic nun Attenuation (optional):	n 6.58			
Density:	0.65	g/cm ³		
Thickness:	1 cm]		
Trans. Frac.	0.911			
Detector: LaBr 10)%			
Distance	2 cm			
Intrinsic Efficiency	0.7643			
Solid Angle Fraction	0.1442			
Detection Efficiency	0.1102			
Total Efficiency	0.1004			
2		Close		

Cross-section calculator

8 What InterSpec is not:

InterSpec is not a magic easy button – all features are interactive – doesn't tell you the answer automatically, but assists the user to perform analysis

Not full-spectrum analysis

Does not do data acquisition - only accepts data already taken

s 🛞

Does not generate reports or adhere to standardized methodologies

⁹ Initial analysis example (about 4 minutes)

Result: 46 uCi of Ir-192 with 6.20 mm of Pb shielding Truth: 51 uCi of Ir-192 with 6.35 mm of Pb shielding

How to use InterSpec

	and the state of the

Interacting with spectra

12 Loading Spectra

InterSpec View Tools Help	Sandie National Laboratories	
		●●● ■ example_spectra <> ■ <> ■ <> ■ <> ■ <> ■
Cours		Favorites Recents Applications Image: Construct of the second
0 250 500 750 1000 1250 1500 1750 2000 2250 2500 Energy (keV) Spectrum Files Peak Manager Reference Photopeaks Energy Calibration Nuclide Search	2750	passthrough.n42
Foreground: Second Foreground:		
No uploaded/available spectra.	pectra. 🗸	
	•	
Omega Scale Factor: Omega Sc		

To load a spectrum file: drag-n-drop from your computer

 When file is over InterSpec, you can choose to open it as Foreground, Background, or Secondary

The InterSpec→Open File... menu option lets you browse for files

Loading Spectra (continued)

You can double-click on spectrum files in the operating system to open them in InterSpec

Window: you have to manually associate file types with InterSpec first macOS/iOS/Android: spectrum files are automatically associated with InterSpec

Interacting with spectra

Zoom in: click and drag to the right - let go of the mouse to zoom in.

Zoom out: click and drag to left; zooming out happens continuously

To pan left or right: click and drag with right mouse-button. Or click and drag x-axis labels

Mouse wheel: up/down zooms in; left/right pans energy

Touch screens: one finger pans left/right, two horizontal fingers zoom in/out

15 Interacting with spectra (cont)

 $\mathsf{View} \to \mathsf{``Show}$ Energy Slider'' will bring up a strip chart

Basic peak-fitting

To fit a peak, double click near it.

Double clicking again will add another peak.

You can adjust the Region Of Interest (ROI), by moving mouse to edge of ROI

Right-click on a peak to get a menu to add or remove a peak from a ROI

Holding control and dragging across a region lets you fit for multiple peaks in a ROI

There is also an automated peak search that works decent, especially for HPGe

- Gets you to the ~80% level for HPGe spectra e.g., may require some "clean-up"
- Does not use the currently showing reference lines, or detector response function (DRF) to identify peaks

18 **Peak Fitting (cont)**

You can also right-click on a peak and choose "Peak Editor..." from the popup menu to have more control over fitting a peak.

You can fix some of the peak quantities, and fit for other ones, manually adjust some of the parameters, select a continuum type, and more

¹⁹ If you forget how to do something:

Sandia National Laboratories InterSpec View Tools Help Zoom-In/Out Peak Fit ROI Fit Pan Energy Energy Slider Peak Editor Energy Calibration Delete Peak Adjust ROI Scale Y Count Gammas **Keyboard Shortcuts** $\mathsf{Help} \rightarrow \mathsf{Welcome} \rightarrow \mathsf{Controls}$ or 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1500 1700 1500 1500 Help→ "Help Contents..." Left-Click Drag right to zoom-in. Left-Click Drag left to zoom-out. or 100 200 300 400 500 600 2400 2500 2600 2700 2800 2900 Ó There is often a ? icon in lower-Spectrum Files Peak Manager Reference left of tools you can click on Nuclide 🔩 Mean 🔩 FWHM er Energy 🐁 ROI C... 🐁 Cont. Type 👒 License and Terms More in depth information show at start when no spectra Close Q Search for Peaks Ţ CSV Peak: 🕀 Add

Important concept!

(A)

Peaks can get associated with a nuclide, x-ray, or reaction

• The peak is actually associated with a specific gamma-line of the nuclide/x-ray/reaction

Associating peaks with a nuclide/reaction/x-ray

Associating a peak with a nuclide/reaction/x-ray:

- Keep track of nuclide ID
- Enables easy energy calibration, nuclide activity, isotope age, shielding, detector response function, calculate fluxes, ...

22 Associating a peak with a nuclide/x-ray/reaction – best method

Show reference lines **before** fitting for peaks

- Association will automatically be made when you fit the peak if there is a gamma-line near peak
- Peak color will be the same as the reference line, to help track ID

Associating a peak with a nuclide/x-ray/reaction – other methods

23

The peak-editor also lets you select the nuclide and energy

Peak Editor			
Parameter	Value	Uncertainty	Fit
Centroid	961.5761	4.2334	✓
FWHM	55.8400	-63.6248	Image: A start and a start
Amplitude	937.1413	148.6831	✓
χ2/DOF	1.1473	0.0000	
ROI Start (keV)	815.1119	0.0000	
ROI End (keV)	1086.8662	0.0000	
Cont. P0	15.4057	0.7404	~
Cont. P1	-0.0409	0.0033	✓
Peak Color	0.0000	0.0000	
Nuclide	Th232 🔻		
Photopeak	968.9700 ke	/ I=3.8e-01 🗸	•
Label			
Peak Color	•	All Th232 p	eaks
Peak Type	Gaussian	v	
Continuum	Linear	~	
Skew Type	None	~	
÷	Peak 2 of 2 in	ROI	
? Cancel I	Refit Apply	Accept	Delete

Tables listing peak information are all

directly editable

Right-click peak and going to "Change Nuclide" item will bring up some suggested nuclides

24 Peaks

By default peaks are Gaussians sitting on top of a polynomial continuum

Peaks can also be "data defined" meaning their amplitude is the area between the continuum observed counts

Recommend sticking with Gaussian + Polynomial unless bad fit

²⁵ Peaks (continued)

Peaks can share a continuum

 If InterSpec doesn't automatically have peaks share a continuum: right-click on a peak, and choose to "Combine Cont. Right/Left" or "Own Continuum".

Peak continuum types

You can select different types of continuums by right-clicking on peak, or in "Peak Editor"

Peak Editor			×
Parameter	Value	Uncertainty	Fit
Centroid	383.4982	0.0037	
FWHM	1.5922	0.0072	
Amplitude	37988.8704	202.1275	
χ2/DOF	1.5639	0.0000	
ROI Start (keV)	379.4738	0.0000	
ROI End (keV)	387.5326	0.0000	
Cont. P0	546.2095	17.8410	
Cont. P1	-37.9476	3.0323	
Peak Color	0.0000	0.0000	
Nuclide			
Photopeak	·	~	·
Label			_
Peak Color	None		
Peak Type	Constant		
Continuum	/ Linear		
Skew Type	Quadratic		
	Cubic		
(?) Canc	Flat Step	🕢 Acce	pt Delete
	Linear Step		
	Bi-linear Ste	p	
	Global Cont.		

More detailed and advanced peakfitting will be covered in part two

Nuclide ID

general approach

e.

The "Nuclide Search" tab lets you search on one or more energies

You can enter an energy and search window manually, or by clicking on a peak, or the spectrum

By default search-results ordered by "Profile" which generally is the best, but can also be ordered by any table column

Clicking on a result row in table will show reference lines for that nuclide, on the spectrum

³⁰ Nuclide ID (continued)

Right-clicking on a peak after fitting it will also show you some suggestions

- Suggestions are meant to assist you they are not a automated identification
- Especially useful for catching sum-peaks, or escape peaks

³¹ Nuclide ID (continued):

The "Reference Photopeaks" tab (covered next) is also really useful for nuclide ID

Reference Photopeaks

- Free State	

Some basics

Reference Photopeaks

The "Reference Photopeaks" tab might be the most useful tool in InterSpec

- Gives you access to all >4000 nuclides, all x-rays, and ~200 reactions
- You can age nuclides, add shielding, DRF, and when appropriate just prompt products
- The reference lines on the spectrum provide additional information when you mouse-over them

Reference Photopeaks (continued)

You can enter "nuclides" in fairly flexible, e.g., all the following are valid:

- Co56, Co-56, 56Co, 56 Co, 56-Co, cobalt 56, 56 Cobalt.
- Ho166m, Ho-166 meta, 166m Ho, 166m-Ho, holmium 166m
- Once you finish entering, will be converted to format like "Co56"

Reactions are entered like: "H(n,g)", "Ge(n,n)", etc

You can also enter "Background", or an element name/symbol for its florescence x-rays

The height of the lines on the spectrum indicate relative intensity of gammas/x-rays

- The heights are scaled so the highest intensity gamma line in currently displayed energy range has a height of 1, and all other lines are scaled linearly relative to this
 - Even if the spectrum y-axis is log, reference lines are linear this best matches what is seen in the data-spectrum, given the continuum counts
- Shielding and DRF (if entered) are taken into account in the chart-line amplitudes, but not on table values

To display lines for multiple isotopes, click "Add Another" and enter a new nuclide in

- Each nuclide can have a different shielding, age, etc. Changing these fields only changes the current nuclide, if you want to alter a previously entered set of reference lines, just type that name into the "Nuclide" field
- Line height scaling for currently visible energy range happens on a per-nuclide level
- If you fit a peak while showing multiple nuclides, usually the best one is chosen to associate with a peak

Reference lines for nuclides will also include x-rays that are emitted during decays

- x-ray intensities are computed during decay calculations so their intensities are comparable to the gammas
 - But be aware of geometry or florescence effects

X-rays are shown as dotted lines on the spectrum

If you just enter a element, its florescence x-rays are shown

Adding shielding can be useful to:

- Knock down high-intensity low-energy lines that are easily shielded
- Account for large amounts of shielding

40

The "Energy Calibration" tab provides extensive energy calibration capabilities

Fitting energy calibration coefficients, using peaks associated with nuclides is particularly useful

Will cover energy calibration more next week – you can also click ? in lower-left of tab

Fitting activity and shielding based on peaks in the spectrum

A quick introduction – not covering theory, or many, many details

Fitting activity, shielding, and age in InterSpec

First: fit peaks, associating them with nuclides

- Peaks that are in both the background and foreground do not need to be fit. Or if a peak is for a nuclide you don't care about you can skip it
- If you have lots of peaks for a nuclide, like a HPGe spectrum of Ra-226, you can maybe fit for just the larger ones

⁴³ Fitting activity, shielding, and age in InterSpec (cont.)

From the "Tools" menu, select "Activity/Shielding Fit"

Activity/Shielding Fit Tool

Activity/Shielding Fit Tool (peaks to use)

All of the peaks you have fit for in the foreground will appear in this list.

• You can choose if a peak should participate in the fitting process.

2 T	•	-	•	•		<dev>=0.5</dev>	7σ	Detector: LaBr 10%
2		•						Distance: 100 cm
	· ·	400	800	1200		1600	-	Add Shielding: The Material R Gene
		•	Energy (keV)			•	
5 °T			•					Te (iron)
4								ρ=7.9 g/cm ³ , AN~26.0
	•							Thickness 6.35 (±0.35) mm
-6								
Nuclide 🐄	Mean 🐾	Photo 🐁	Use 🔩	Nuclide 7	Activi	Fit Act.	Ψ.	
Ho166m	183.96	184.41 keV	✓ true	Ho166m	35.21 uCi	✓ true		
Ho166m	280.34	280.46 keV	✓ true	Cs137	19.22 uCi	✓ true		
Ho166m	411.06	410.94 keV	✓ true	Bi207	39.43 uCi	V true		
Bi207	569.88	569.70 keV	✓ true					
Cs137	662.16	661.66 keV	d true					
Ho166m	711.70	711.68 keV	✓ true	4				
Ho166m	753.90	752.28 keV	🗹 true					
			All Peaks					
Multiple p	uclidee cont	tribute to peak						
		indute to peak						
Subtract E	sackground	Peaks						
Isotopes of the second seco	f same eler	ment same age	•					
Show Chi	Graphic			-				Perform Model Fit

Any nuclides associated with the peaks you have selected, will appear here

- You can manually edit an activity, and choose not to fit it, if you happen to know it, but not the shielding
- Not shown above, but age of nuclides is also editable, or fittable for applicable nuclides

Activity/Shielding Fit Tool (shielding)

	🖻 Detector: LaBr 10%
	Distance: 100 cm
	Add Shielding: 💮 Material 🚫 Generic
	Te (iron)
Clicking on these icons will	ρ =7.9 g/cm ³ , \overline{AN} ~26.0 \oplus
toggle between shielding types	Thickness 6.35 (±0.35) mm
	Seneric 🔻 🖂
	\oplus
	AN 26 Fit AD 0.0 g/cm ²

- The shielding can be either a specific type of material from InterSpecs database, or it can be a generic material where you specify the atomic number (AN) and areal density (AD), or you can enter a chemical formula and density.
 - You can choose to fit for, or fix, thickness, AN, and AD
- You can have multiple shielding's, but of course this can get degenerate to fit for multiple of them, especially if they have similar effective atomic numbers

Activity/Shielding Fit Tool: Graphic

The graphic in this tool is to help provide you an idea of how well the data lines up to the model

- Left: chart shows you how many statistical deviations each peak is away from the best-estimate answer
- Right: chart shows you the multiple of how far away from the model each peak-area is. The error bars are 1-sigma statistical uncertainties.
- E.x., if the dot corresponding to a peak is at 2.0, that indicates that peak would give double the activity that is currently showing

Generally, if after doing a "Perform Model Fit," a peak is greater than maybe 5-or-so-sigma away from the nominal value, you should consider removing that peak from the fit, or checking that its associated with the correct gamma line, or that there isn't an interfering nuclide that you aren't currently fitting for

Activity/Shielding Fit Tool: Detector Response Functions

If you click/tap on the detector area, it will bring up this dialog

- InterSpec includes a few generic Detector Response Functions (DRF)
- You can load DRFs from a few different common sources
- You can enter a mathematical formula for efficiency as a function of energy

The "Make Detector Response" tool can also be used to create your own DRF from characterization data

Generally the same DRF can be used for all detectors of the same model

Detector response functions not further covered in this presentation

Activity/Shielding Fit Tool – some words of caution

This tool really does require your critical thinking and spectroscopy knowledge.

You can shoot yourself in the foot.

And its also not magic. You can only fit for as many quantities as you have peaks for. So for Cs137, you can only fit for activity or shielding thickness; not both, or not the atomic number of shielding.

If you are fitting for the atomic number of shielding, you generally will need one or more peaks below 300 keV.

And you always need to ask yourself if the result makes sense.

And you should always add additional uncertainties for things like distance, or the detector response function, or a million other things.

Example Problem setup:

A 20cm x 20cm x 20cm package is found to be radioactive

A 20 minute spectrum is taken, 40 cm from surface of package using HPGe detector

Please: open "example_problem_1.n42", perform nuclide identification and quantification

Assume Lead (Pb) shielding, and source is centered in box

For convenience, the detector response function and background spectrum is included in the N42 file

Spectrum to be evaluates (only contains Eu152) 51

⁵² **True Answer:**

Eu-152

Result: 449 ± 6 kBq (12.1 ± 0.2 µCi) 6.3 ± 0.1 mm Pb shielding Truth: 451 ± 3 kBq (12.2 ± 0.1 µCi) 7.0 mm Pb shielding

Uncertainties are $1-\sigma$, statistical only.