Adder Bricks
- class fugu.bricks.adder_bricks.streaming_adder(name=None)
Bases:
Brick
streaming adder function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings)
Build streaming adder brick.
- Parameters:
graph – networkx graph to define connections of the computational graph
dimensionality (dict) – dictionary to define the shapes and parameters of the brick
control_nodes (dict) – dictionary of lists of auxillary networkx nodes. Excpected keys: ‘complete’ - A list of neurons that fire when the brick is done
input_lists (list) – list of nodes that will contain input
input_coding (list) – list of input coding formats
- Returns:
graph of a computational elements and connections self.dimensionality: dictionary of output parameters (shape, coding, layers, depth, etc) complete: dictionary of control nodes (‘complete’) output_list: list of output output_codings: list of coding formats of output
- Return type:
graph
- class fugu.bricks.adder_bricks.temporal_shift(name=None, shift_length=1)
Bases:
Brick
temporal shift function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings)
Build bit shift brick.
- Parameters:
graph – networkx graph to define connections of the computational graph
dimensionality (dict) – dictionary to define the shapes and parameters of the brick
control_nodes (dict) – dictionary of lists of auxillary networkx nodes. Excpected keys: ‘complete’ - A list of neurons that fire when the brick is done
input_lists (dict) – list of nodes that will contain input
input_coding (dict) – list of input coding formats
- Returns:
graph of a computational elements and connections self.dimensionality: dictionary of output parameters (shape, coding, layers, depth, etc) dictionary of control nodes (‘complete’) output_lists: list of output output_codings: list of coding formats of output
- Return type:
graph
- class fugu.bricks.adder_bricks.streaming_scalar_multiplier(name=None, shift_length=1)
Bases:
Brick
streaming scalar multiplier function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings, alpha=0.125)
Deprecated method for building the computational graph of the brick. New brick subclasses should override build2() instead.
- Parameters:
graph (graph) – networkx graph
metadata (dictionary) – A dictionary of shapes and properties
control_nodes (list) –
list of dictionary of auxillary nodes. Acceptable keys include:
’complete’ - A list of neurons that fire when the brick is done ‘begin’ - A list of neurons that fire when the brick begins computation
(used for temporal processing)
input_lists (list) – list of lists of nodes for input neurons
input_codings (list) – list of input coding types (as strings)
- class fugu.bricks.adder_bricks.streaming_adder(name=None)
Bases:
Brick
streaming adder function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings)
Build streaming adder brick.
- Parameters:
graph – networkx graph to define connections of the computational graph
dimensionality (dict) – dictionary to define the shapes and parameters of the brick
control_nodes (dict) – dictionary of lists of auxillary networkx nodes. Excpected keys: ‘complete’ - A list of neurons that fire when the brick is done
input_lists (list) – list of nodes that will contain input
input_coding (list) – list of input coding formats
- Returns:
graph of a computational elements and connections self.dimensionality: dictionary of output parameters (shape, coding, layers, depth, etc) complete: dictionary of control nodes (‘complete’) output_list: list of output output_codings: list of coding formats of output
- Return type:
graph
- class fugu.bricks.adder_bricks.temporal_shift(name=None, shift_length=1)
Bases:
Brick
temporal shift function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings)
Build bit shift brick.
- Parameters:
graph – networkx graph to define connections of the computational graph
dimensionality (dict) – dictionary to define the shapes and parameters of the brick
control_nodes (dict) – dictionary of lists of auxillary networkx nodes. Excpected keys: ‘complete’ - A list of neurons that fire when the brick is done
input_lists (dict) – list of nodes that will contain input
input_coding (dict) – list of input coding formats
- Returns:
graph of a computational elements and connections self.dimensionality: dictionary of output parameters (shape, coding, layers, depth, etc) dictionary of control nodes (‘complete’) output_lists: list of output output_codings: list of coding formats of output
- Return type:
graph
- class fugu.bricks.adder_bricks.streaming_scalar_multiplier(name=None, shift_length=1)
Bases:
Brick
streaming scalar multiplier function. Brad Aimone jbaimon@sandia.gov
- build(graph, dimensionality, control_nodes, input_lists, input_codings, alpha=0.125)
Deprecated method for building the computational graph of the brick. New brick subclasses should override build2() instead.
- Parameters:
graph (graph) – networkx graph
metadata (dictionary) – A dictionary of shapes and properties
control_nodes (list) –
list of dictionary of auxillary nodes. Acceptable keys include:
’complete’ - A list of neurons that fire when the brick is done ‘begin’ - A list of neurons that fire when the brick begins computation
(used for temporal processing)
input_lists (list) – list of lists of nodes for input neurons
input_codings (list) – list of input coding types (as strings)